Empirical study of human pose representations for gait recognition

dc.contributor.authorCubero Torres, Nicolás
dc.contributor.authorCastro, Francisco M.
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorGuil-Mata, Nicolás
dc.contributor.authorMarín-Jiménez, Manuel José
dc.date.accessioned2025-05-09T11:24:58Z
dc.date.available2025-05-09T11:24:58Z
dc.date.issued2025-02-28
dc.departamentoArquitectura de Computadoreses_ES
dc.description.abstractGait recognition has gained attention for its ability to identify individuals from afar. Current state-of-the-art approaches predominantly utilize visual information, such as silhouettes, or a combination of visual data and basic body pose information, including skeleton joint coordinates. However, the role of human pose in gait recognition is still underexplored, often leading to poorer results compared to visual approaches. In this work, we propose a novel hierarchical limb-based representation that enhances the depiction of body pose and can be applied to various pose descriptors. Our representation consists of three hierarchical levels: full body, body limbs (arms and legs), and middle limbs (forearms, lower arms, thighs, and shins). This structure enriches the gait description of the overall pose by incorporating the specific movements of each limb. Particularly, we investigate the application of our hierarchical arrangement using two different rich pose descriptors: heatmaps derived from 2D body skeletons and a dense representation obtained from pixel-wise estimation of body pose (i.e DensePose). Furthermore, we introduce the PoseGaitGL family of models to better leverage the features derived from our pose representations. By employing our hierarchical pose representations, the proposed model achieves state-of-the-art results in pose-based gait recognition. Thus, the hierarchical heatmap-based and hierarchical DensePose representations attain Rank-1 accuracy of 82.2% and 92.0%, respectively, on the cross-view setup of CASIA-B, and 99.3% and 99.8%, respectively, on TUM-GAID, establishing a new benchmark for pose-based methods. Source code is available at https://github.com/Nico-Cubero/PoseGaitGLes_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationCubero, N., Castro, F. M., Cózar, J. R., Guil, N., & Marín-Jiménez, M. J. (2025). Empirical study of human pose representations for gait recognition. Expert Systems with Applications, 275, 126946.es_ES
dc.identifier.doi10.1016/j.eswa.2025.126946
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/10630/38556
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectBiometríaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectMecánica humanaes_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherHuman posees_ES
dc.subject.otherBiometricses_ES
dc.subject.otherDeep learninges_ES
dc.titleEmpirical study of human pose representations for gait recognitiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication046027b0-4274-40e8-b067-d162ba047b37
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscovery046027b0-4274-40e8-b067-d162ba047b37

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957417425005688-main.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format
Description:

Collections