Compostion of Analytic Paraproducts
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Aleman, Alexandru | |
| dc.contributor.author | Cascante, Carmen | |
| dc.contributor.author | Fàbrega, Joan | |
| dc.contributor.author | Pascuas, Daniel | |
| dc.contributor.author | Peláez-Márquez, José Ángel | |
| dc.date.accessioned | 2025-01-28T12:46:52Z | |
| dc.date.available | 2025-01-28T12:46:52Z | |
| dc.date.issued | 2022 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description.abstract | For a fixed analytic function $g$ on the unit disc $\D$, we consider the analytic paraproducts induced by $g$, which are defined by $T_gf(z)= \int_0^z f(\z)g'(\z)\,d\z$, $S_gf(z)= \int_0^z f'(\z)g(\z)\,d\z$, and $M_gf(z)= f(z)g(z)$. The boundedness of these operators on various spaces of analytic functions on $\D$ is well understood. The original motivation for this work is to understand the boundedness of compositions of two of these operators, for example $T_g^2, \,T_gS_g,\, M_gT_g$, etc. Our methods yield a characterization of the boundedness of a large class of operators contained in the algebra generated by these analytic paraproducts acting on the classical weighted Bergman and Hardy spaces in terms of the symbol $g$. In some cases it turns out that this property is not affected by cancellation, while in others it requires stronger and more subtle restrictions on the oscillation of the symbol $g$ than the case of a single paraproduct. | es_ES |
| dc.description.sponsorship | The research of the second, third and fourth author was supported in part by Ministerio de Economía y Competitividad, Spain, project MTM2017-83499-P, and Generalitat de Catalunya, project 2017SGR358. The research of the fifth author was supported in part by Ministerio de Economíaa y Competitividad, Spain, projects PGC2018-096166-B-100; La Junta de Andalucía, projects FQM210 and UMA18-FEDERJA-002. | es_ES |
| dc.identifier.citation | Alexandru Aleman, Carme Cascante, Joan Fàbrega, Daniel Pascuas, José Ángel Peláez, Composition of analytic paraproducts, Journal de Mathématiques Pures et Appliquées, Volume 158, 2022, Pages 293-319, ISSN 0021-7824, https://doi.org/10.1016/j.matpur.2021.11.007. (https://www.sciencedirect.com/science/article/pii/S0021782421001689) | es_ES |
| dc.identifier.doi | 10.1016/j.matpur.2021.11.007 | |
| dc.identifier.uri | https://hdl.handle.net/10630/37198 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Hardy, Espacios de | es_ES |
| dc.subject.other | Analytic Paraproduct | es_ES |
| dc.subject.other | Hardy spaces | es_ES |
| dc.subject.other | Weighted Bergman spaces | es_ES |
| dc.subject.other | Bloch space | es_ES |
| dc.subject.other | BMOA space | es_ES |
| dc.title | Compostion of Analytic Paraproducts | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a | |
| relation.isAuthorOfPublication.latestForDiscovery | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- AleCasFabPasPel2021rev.pdf
- Size:
- 501.73 KB
- Format:
- Adobe Portable Document Format
- Description:

