Compostion of Analytic Paraproducts

dc.centroFacultad de Cienciases_ES
dc.contributor.authorAleman, Alexandru
dc.contributor.authorCascante, Carmen
dc.contributor.authorFàbrega, Joan
dc.contributor.authorPascuas, Daniel
dc.contributor.authorPeláez-Márquez, José Ángel
dc.date.accessioned2025-01-28T12:46:52Z
dc.date.available2025-01-28T12:46:52Z
dc.date.issued2022
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.description.abstractFor a fixed analytic function $g$ on the unit disc $\D$, we consider the analytic paraproducts induced by $g$, which are defined by $T_gf(z)= \int_0^z f(\z)g'(\z)\,d\z$, $S_gf(z)= \int_0^z f'(\z)g(\z)\,d\z$, and $M_gf(z)= f(z)g(z)$. The boundedness of these operators on various spaces of analytic functions on $\D$ is well understood. The original motivation for this work is to understand the boundedness of compositions of two of these operators, for example $T_g^2, \,T_gS_g,\, M_gT_g$, etc. Our methods yield a characterization of the boundedness of a large class of operators contained in the algebra generated by these analytic paraproducts acting on the classical weighted Bergman and Hardy spaces in terms of the symbol $g$. In some cases it turns out that this property is not affected by cancellation, while in others it requires stronger and more subtle restrictions on the oscillation of the symbol $g$ than the case of a single paraproduct.es_ES
dc.description.sponsorshipThe research of the second, third and fourth author was supported in part by Ministerio de Economía y Competitividad, Spain, project MTM2017-83499-P, and Generalitat de Catalunya, project 2017SGR358. The research of the fifth author was supported in part by Ministerio de Economíaa y Competitividad, Spain, projects PGC2018-096166-B-100; La Junta de Andalucía, projects FQM210 and UMA18-FEDERJA-002.es_ES
dc.identifier.citationAlexandru Aleman, Carme Cascante, Joan Fàbrega, Daniel Pascuas, José Ángel Peláez, Composition of analytic paraproducts, Journal de Mathématiques Pures et Appliquées, Volume 158, 2022, Pages 293-319, ISSN 0021-7824, https://doi.org/10.1016/j.matpur.2021.11.007. (https://www.sciencedirect.com/science/article/pii/S0021782421001689)es_ES
dc.identifier.doi10.1016/j.matpur.2021.11.007
dc.identifier.urihttps://hdl.handle.net/10630/37198
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectHardy, Espacios dees_ES
dc.subject.otherAnalytic Paraproductes_ES
dc.subject.otherHardy spaceses_ES
dc.subject.otherWeighted Bergman spaceses_ES
dc.subject.otherBloch spacees_ES
dc.subject.otherBMOA spacees_ES
dc.titleCompostion of Analytic Paraproductses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication0bd5c162-fae0-458f-9ff2-42c98e3cd63a
relation.isAuthorOfPublication.latestForDiscovery0bd5c162-fae0-458f-9ff2-42c98e3cd63a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AleCasFabPasPel2021rev.pdf
Size:
501.73 KB
Format:
Adobe Portable Document Format
Description:

Collections