Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOAP-MPDI

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Quinoidal oligothiophenes have received considerable attention as interesting platforms with remarkable amphoteric redox behavior associated with their diradical character increasing with the conjugation lengths. In this work, we considered a family of quinoidal oligothiophenes bearing cyano-ester terminal groups and characterized them by UV-Vis-NIR absorption and Raman spectroscopy measurements at different excitation wavelengths. The experimental investigation is complemented by quantum-chemical studies to assess the quality of computed density functional theory (DFT) ground state structures and their influence on predicted Raman intensities. In addition, resonance conditions with the optically active HOMO→LUMO transition as well as with the more elusive state dominated by the doubly excited HOMO,HOMO→LUMO,LUMO configuration, are determined with DFT-MRCI calculations and their contributions to Raman activity enhancement are discussed in terms of computed vibrational Huang–Rhys (HR) factors

Description

Bibliographic citation

Dai Y, Bonometti L, Zafra JL, Takimiya K, Casado J, Negri F. Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State. Chemistry. 2022; 4(2):329-344. https://doi.org/10.3390/chemistry4020025

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional