Testing machine learning algorithms for the prediction of depositional fluxes of the radionuclides 7Be, 210Pb and 40K

dc.contributor.authorDe La Torre Luque, P.
dc.contributor.authorDueñas-Buey, Mª Concepción
dc.contributor.authorGordo Puertas, Elisa
dc.contributor.authorCañete-Hidalgo, Sergio Andrés
dc.date.accessioned2023-06-28T10:43:25Z
dc.date.available2023-06-28T10:43:25Z
dc.date.issued2023
dc.departamentoFísica Aplicada I
dc.description.abstractThe monthly depositional fluxes of 7Be, 210Pb and 40K were measured at Malaga, (Southern Spain) from 2005 to 2018. In this work, the depositional fluxes of these radionuclides are investigated and their relations with several atmospheric variables have been studied by applying two popular machine learning methods: Random Forest and Neural Network algorithms. We extensively test different configurations of these algorithms and demonstrate their predictive ability for reproducing depositional fluxes. The models derived with Neural Networks achieve slightly better results, in average, although similar, having into account the uncertainties. The mean Pearson-R coefficients, evaluated with a k-fold cross-validation method, are around 0.85 for the three radionuclides using Neural Network models, while they go down to 0.83, 0.79 and 0.8 for 7Be, 210Pb and 40K, respectively, for the Random Forest models. Additionally, applying the Recursive Feature Elimination technique we determine the variables more correlated with the depositional fluxes of these radionuclides, which elucidates the main dependences of their temporal variability.es_ES
dc.description.sponsorshipThis research was funded by Consejo de Seguridad Nuclear (Spain). Funding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationDe La Torre Luque, P. et al. “Testing Machine Learning Algorithms for the Prediction of Depositional Fluxes of the Radionuclides 7Be, 210Pb and 40K.” Journal of environmental radioactivity 265 (2023): 107213–107213. Web.es_ES
dc.identifier.doihttps://doi.org/10.1016/j.jenvrad.2023.107213
dc.identifier.urihttps://hdl.handle.net/10630/27107
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectIsótopos radiactivoses_ES
dc.subjectDeposición atmosférica
dc.subject.otherNatural radionuclideses_ES
dc.subject.otherDepositional fluxeses_ES
dc.subject.otherMachine learning techniqueses_ES
dc.titleTesting machine learning algorithms for the prediction of depositional fluxes of the radionuclides 7Be, 210Pb and 40Kes_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication9de3eed7-0dbe-4fd8-96c4-54b12857cc4b
relation.isAuthorOfPublicationefe3fce7-d920-4994-b34a-e0622ff29e93
relation.isAuthorOfPublication.latestForDiscovery9de3eed7-0dbe-4fd8-96c4-54b12857cc4b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0265931X23001066-main.pdf
Size:
4.34 MB
Format:
Adobe Portable Document Format
Description:

Collections