Comparison of Interactive Evolutionary Multiobjective Optimization Methods Using an Artificial Decision Maker

dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.contributor.authorRuiz-Mora, Ana Belén
dc.contributor.authorAfsar, Bekir
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2021-07-15T10:20:06Z
dc.date.available2021-07-15T10:20:06Z
dc.date.created2021
dc.date.issued2021-07
dc.departamentoEconomía Aplicada (Matemáticas)
dc.description.abstractIn interactive evolutionary multiobjective optimization methods, preferences of a decision maker (DM), a domain expert, are iteratively incorporated to generate solutions that reflect the DM’s interests. When comparing these methods, we need means to capture features inherent in the nature of the solution processes. Namely, the DM’s preferences evolve while (s)he learns about the problem’s trade-offs and the feasibility of her/his own preferences. In this work, we implement an artificial decision maker (ADM) to evaluate reference point-based interactive evolutionary methods. A reference point consists of desirable values for the objectives. To simulate several iterations with an interactive method, the ADM generates reference points differently depending on two phases that can be distinguished in the solution process. In the learning phase, reference points simulate exploration to examine various Pareto optimal solutions to find a potential region of interest. Then, reference points of the decision phase mimic a progressive convergence towards the most preferred solution in this region. Each reference point is used to assess the methods’ performances per iteration. The ADM’s performance is demonstrated by comparing several interactive evolutionary methods on benchmark problems with up to 9 objectives. Future work includes consideration of other types of preference information and incorporation of a procedure to automatically switch from the learning to the decision phase.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/22646
dc.language.isoenges_ES
dc.relation.eventdate11 al 14 de julio de 2021es_ES
dc.relation.eventplaceAtenas (Grecia)es_ES
dc.relation.eventtitle31st European Conference on Operational Research (EURO 2021)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectToma de decisioneses_ES
dc.subjectAlgoritmos computacionaleses_ES
dc.subject.otherDecision makinges_ES
dc.subject.otherPerformance comparisones_ES
dc.subject.otherInteractive methodses_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherReference pointes_ES
dc.titleComparison of Interactive Evolutionary Multiobjective Optimization Methods Using an Artificial Decision Makeres_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione6c7779d-ecb2-4482-b2e5-d26830558834
relation.isAuthorOfPublication.latestForDiscoverye6c7779d-ecb2-4482-b2e5-d26830558834

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abstract_EURO2021_ADM.pdf
Size:
80.07 KB
Format:
Adobe Portable Document Format
Description: