Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorSaborido Infantes, Rubén
dc.contributor.authorRuiz-Mora, Ana Belén
dc.contributor.authorLuque-Gallego, Mariano
dc.date.accessioned2024-10-01T06:14:47Z
dc.date.available2024-10-01T06:14:47Z
dc.date.issued2016
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractIn this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA (global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.es_ES
dc.identifier.citationRubén Saborido, Ana B. Ruiz, Mariano Luque; Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Evol Comput 2017; 25 (2): 309–349. doi: https://doi.org/10.1162/EVCO_a_00175es_ES
dc.identifier.doihttps://doi.org/10.1162/EVCO_a_00175
dc.identifier.urihttps://hdl.handle.net/10630/34098
dc.language.isoenges_ES
dc.publisherMIT Press Directes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectToma de decisiones multicriterioes_ES
dc.subjectInteligencia artificiales_ES
dc.subject.otherMultiobjective optimizationes_ES
dc.subject.otherPareto optimal solutionses_ES
dc.subject.otherAchievement scalarizing functiones_ES
dc.subject.otherEvolutionary algorithmes_ES
dc.titleGlobal WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Frontes_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione6c7779d-ecb2-4482-b2e5-d26830558834
relation.isAuthorOfPublication39347849-2655-4c96-b184-737a7a0673f2
relation.isAuthorOfPublication.latestForDiscoverye6c7779d-ecb2-4482-b2e5-d26830558834

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saborido et al. - 2017 - Global WASF-GA An Evolutionary Algorithm in Multi.pdf
Size:
858.99 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections