Inter-channel Granger Causality for Estimating EEG Phase Connectivity Patterns in Dyslexia

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorRodríguez-Rodríguez, Ignacio
dc.contributor.authorOrtiz-García, Andrés
dc.contributor.authorFormoso, Marco A.
dc.contributor.authorGallego-Molina, Nicolás J.
dc.contributor.authorLuque-Vilaseca, Juan Luis
dc.date.accessioned2022-07-19T06:58:07Z
dc.date.available2022-07-19T06:58:07Z
dc.date.created2022
dc.date.issued2022
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractMethods like Electroencephalography (EEG) and magnetoencephalogram (MEG) record brain oscillations and provide an invaluable insight into healthy and pathological brain function. These signals are helpful to study and achieve an objective and early diagnosis of neural disorders as Developmental Dyslexia (DD). An atypical oscillatory sampling could cause the characteristic phonological difficulties of dyslexia at one or more temporal rates; in this sense, measuring the EEG signal can help to make an early diagnosis of DD. The LEEDUCA study conducted a series of EEG experiments on children listening to amplitude modulated (AM) noise with slow-rhythmic prosodic (0.5–1 Hz) to detect differences in perception of oscillatory ampling that could be associated with dyslexia. The evolution of each EEG channel has been studied in the frequency domain, obtaining the analytical phase using the Hilbert transform. Subsequently, the cause-effect relationships between channels in ach subject have been reflected thanks to Granger causality, obtaining matrices that reflect the interaction between the different parts of the brain. Hence, each subject was classified as belonging or not to the control group or the experimental group. For this purpose, two ensemble classification algorithms were compared, showing that both can reach acceptable classifying erformance in delta band with an accuracy up to 0.77, recall of 0.91 and AUC of 0.97 using Gradient Boosting classifier.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24714
dc.language.isoenges_ES
dc.relation.eventdate31/05/2022es_ES
dc.relation.eventplacePuerto de la Cruz, Tenerifees_ES
dc.relation.eventtitle9th International Work-Conference on the Interplay between natural and artificial computation (IWINAC 2022)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDislexiaes_ES
dc.subjectElectroencefalografíaes_ES
dc.subject.otherEEGes_ES
dc.subject.otherDyslexiaes_ES
dc.subject.otherMachine learninges_ES
dc.titleInter-channel Granger Causality for Estimating EEG Phase Connectivity Patterns in Dyslexiaes_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d9e81fc-5f53-42ea-82c8-809b9defd772
relation.isAuthorOfPublicationae01056f-b4bd-452b-9139-f397c289666f
relation.isAuthorOfPublication.latestForDiscovery5d9e81fc-5f53-42ea-82c8-809b9defd772

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IWINAC2022_irr.pdf
Size:
936.3 KB
Format:
Adobe Portable Document Format
Description:
Presentación
Download

Description: Presentación