Enhancing Intensity Differences in EEG Cross-Frequency Coupling Maps for Dyslexia Detection.
| dc.centro | E.T.S.I. Telecomunicación | es_ES |
| dc.contributor.author | Castillo-Barnes, Diego | |
| dc.contributor.author | Ortiz-García, Andrés | |
| dc.contributor.author | Stabile, Pietro | |
| dc.contributor.author | Gallego Molina, Nicolás Jesús | |
| dc.contributor.author | Figueiredo, Patrícia | |
| dc.contributor.author | Luque-Vilaseca, Juan Luis | |
| dc.date.accessioned | 2024-07-04T10:21:27Z | |
| dc.date.available | 2024-07-04T10:21:27Z | |
| dc.date.issued | 2024 | |
| dc.departamento | Ingeniería de Comunicaciones | |
| dc.description | Política de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policies | es_ES |
| dc.description.abstract | In this study, we introduced and applied a novel histogram transformation technique to enhance the interpretability and discriminative power of Cross-Frequency Coupling (CFC) maps derived from EEG signals for dyslexia detection. Our approach addresses the challenge of subtle intensity differences in CFC maps, which can hinder the accurate identification of dyslexia-related patterns. Through visual inspection and quantitative analysis, we demonstrated the effectiveness of the histogram transformation technique in amplifying intensity differences within CFC maps. Specifically, our results show significant improvements in the significance of CFC map pixels, particularly in the Alpha-Beta coupling band, post-transformation. This enhancement in discriminative power was further supported by the reduction in entropy and the identification of texture feature changes through Gray-Level Co-occurrence Matrix (GLCM) analysis. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | Castillo-Barnes, D., Ortiz, A., Stabile, P., Gallego-Molina, N.J., Figueiredo, P., Luque, J.L. (2024). Enhancing Intensity Differences in EEG Cross-Frequency Coupling Maps for Dyslexia Detection. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_6 | es_ES |
| dc.identifier.doi | 10.1007/978-3-031-61140-7_6 | |
| dc.identifier.uri | https://hdl.handle.net/10630/31889 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.relation.eventdate | junio 2024 | es_ES |
| dc.relation.eventplace | Olhão, Algarve, Portugal | es_ES |
| dc.relation.eventtitle | 10th International Work-conference on the Interplay between Natural and Artificial Computation | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Dislexia | es_ES |
| dc.subject | Diagnóstico por imagen | es_ES |
| dc.subject | Cerebro - Histología | es_ES |
| dc.subject | Entropía (Teoría de la información) | es_ES |
| dc.subject.other | EEG | es_ES |
| dc.subject.other | Cross-Frequency Coupling | es_ES |
| dc.subject.other | Dyslexia | es_ES |
| dc.subject.other | Image processing | es_ES |
| dc.subject.other | Histogram transformation | es_ES |
| dc.subject.other | Mann-Whitney-Wilcoxon | es_ES |
| dc.subject.other | Cross-Entropy | es_ES |
| dc.subject.other | GLCM | es_ES |
| dc.subject.other | Interpretability | es_ES |
| dc.title | Enhancing Intensity Differences in EEG Cross-Frequency Coupling Maps for Dyslexia Detection. | es_ES |
| dc.type | conference output | es_ES |
| dc.type.hasVersion | AM | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 5d9e81fc-5f53-42ea-82c8-809b9defd772 | |
| relation.isAuthorOfPublication | ae01056f-b4bd-452b-9139-f397c289666f | |
| relation.isAuthorOfPublication.latestForDiscovery | 5d9e81fc-5f53-42ea-82c8-809b9defd772 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Diegoc - IWINAC2024 - Histogram_transformation.pdf
- Size:
- 690.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

