Combination of Evolutionary Algorithms with Experimental Design, Traditional Optimization and Machine Learning

dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.contributor.authorZhang, Qingfu
dc.date.accessioned2016-05-24T09:11:07Z
dc.date.available2016-05-24T09:11:07Z
dc.date.created2016
dc.date.issued2016-05-24
dc.departamentoEconomía Aplicada (Matemáticas)
dc.description.abstractEvolutionary algorithms alone cannot solve optimization problems very efficiently since there are many random (not very rational) decisions in these algorithms. Combination of evolutionary algorithms and other techniques have been proven to be an efficient optimization methodology. In this talk, I will explain the basic ideas of our three algorithms along this line (1): Orthogonal genetic algorithm which treats crossover/mutation as an experimental design problem, (2) Multiobjective evolutionary algorithm based on decomposition (MOEA/D) which uses decomposition techniques from traditional mathematical programming in multiobjective optimization evolutionary algorithm, and (3) Regular model based multiobjective estimation of distribution algorithms (RM-MEDA) which uses the regular property and machine learning methods for improving multiobjective evolutionary algorithms.es_ES
dc.identifier.urihttp://hdl.handle.net/10630/11481
dc.language.isoenges_ES
dc.relation.eventdate24 junio 2016
dc.relation.eventplaceMálaga
dc.relation.eventtitleConferencia
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectComputación evolutivaes_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherMultiobjective optimizationes_ES
dc.titleCombination of Evolutionary Algorithms with Experimental Design, Traditional Optimization and Machine Learninges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Title-Abstract_Presentation.pdf
Size:
172.19 KB
Format:
Adobe Portable Document Format