Hierarchical Color Quantization with a Neural Gas Model Based on Bregman Divergences

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorPalomo-Ferrer, Esteban José
dc.contributor.authorBenito-Picazo, Jesús
dc.contributor.authorDomínguez-Merino, Enrique
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorOrtega-Zamorano, Francisco
dc.date.accessioned2021-10-04T10:53:34Z
dc.date.available2021-10-04T10:53:34Z
dc.date.issued2021-09
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionhttps://www.springernature.com/gp/open-science/policies/book-policies
dc.description.abstractIn this paper, a new color quantization method based on a self-organized artificial neural network called the Growing Hierarchical Bregman Neural Gas (GHBNG) is proposed. This neural network is based on Bregman divergences, from which the squared Euclidean distance is a particular case. Thus, the best suitable Bregman divergence for color quantization can be selected according to the input data. Moreover, the GHBNG yields a tree-structured model that represents the input data so that a hierarchical color quantization can be obtained, where each layer of the hierarchy contains a different color quantization of the original image. Experimental results confirm the color quantization capabilities of this approach.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.doi10.1007/978-3-030-87869-6_31
dc.identifier.urihttps://hdl.handle.net/10630/22954
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdate22/09/2021es_ES
dc.relation.eventplaceBilbao, Españaes_ES
dc.relation.eventtitle16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales artificialeses_ES
dc.subject.otherColor quantizationes_ES
dc.subject.otherClusteringes_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherSelf-organizationes_ES
dc.titleHierarchical Color Quantization with a Neural Gas Model Based on Bregman Divergenceses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationee7a0035-e256-42bb-ac83-bc46a618cd04
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoveryee7a0035-e256-42bb-ac83-bc46a618cd04

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper - GHBNG_for_Color_Quantization.pdf
Size:
18.06 MB
Format:
Adobe Portable Document Format
Description: