Hierarchical Color Quantization with a Neural Gas Model Based on Bregman Divergences
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Palomo-Ferrer, Esteban José | |
| dc.contributor.author | Benito-Picazo, Jesús | |
| dc.contributor.author | Domínguez-Merino, Enrique | |
| dc.contributor.author | López-Rubio, Ezequiel | |
| dc.contributor.author | Ortega-Zamorano, Francisco | |
| dc.date.accessioned | 2021-10-04T10:53:34Z | |
| dc.date.available | 2021-10-04T10:53:34Z | |
| dc.date.issued | 2021-09 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description | https://www.springernature.com/gp/open-science/policies/book-policies | |
| dc.description.abstract | In this paper, a new color quantization method based on a self-organized artificial neural network called the Growing Hierarchical Bregman Neural Gas (GHBNG) is proposed. This neural network is based on Bregman divergences, from which the squared Euclidean distance is a particular case. Thus, the best suitable Bregman divergence for color quantization can be selected according to the input data. Moreover, the GHBNG yields a tree-structured model that represents the input data so that a hierarchical color quantization can be obtained, where each layer of the hierarchy contains a different color quantization of the original image. Experimental results confirm the color quantization capabilities of this approach. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.doi | 10.1007/978-3-030-87869-6_31 | |
| dc.identifier.uri | https://hdl.handle.net/10630/22954 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.relation.eventdate | 22/09/2021 | es_ES |
| dc.relation.eventplace | Bilbao, España | es_ES |
| dc.relation.eventtitle | 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Redes neuronales artificiales | es_ES |
| dc.subject.other | Color quantization | es_ES |
| dc.subject.other | Clustering | es_ES |
| dc.subject.other | Neural networks | es_ES |
| dc.subject.other | Self-organization | es_ES |
| dc.title | Hierarchical Color Quantization with a Neural Gas Model Based on Bregman Divergences | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ee7a0035-e256-42bb-ac83-bc46a618cd04 | |
| relation.isAuthorOfPublication | ee99eb5a-8e94-462f-9bea-2da1832bedcf | |
| relation.isAuthorOfPublication | ae409266-06a3-4cd4-84e8-fb88d4976b3f | |
| relation.isAuthorOfPublication.latestForDiscovery | ee7a0035-e256-42bb-ac83-bc46a618cd04 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Paper - GHBNG_for_Color_Quantization.pdf
- Size:
- 18.06 MB
- Format:
- Adobe Portable Document Format
- Description:

