Enhanced transfer learning model by image shifting on a square lattice for skin lesion malignancy assessment

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Skin cancer is one of the most prevalent diseases among people. Physicians have a challenge every time they have to determine whether a diseased skin is benign or malign. There exist clinical diagnosis methods (such as the ABCDE rule), but they depend mainly on the physician’s experience and might be imprecise. Deep learning models are very extended in medical image analysis, and several deep models have been proposed for moles classification. In this work, a convolutional neural network is proposed to support the diagnosis procedure. The proposed MobileNetV2-based model is improved by a shifting technique, providing better performance than raw transfer learning models for moles classification. Experiments show that this technique could be applied to the state-of-the-art deep models to improve their results and outperform the training phase.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by