Slide-Down Prevention for Wheeled Mobile Robots on Slopes

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Wheeled mobile robots on inclined terrain can slide down due to loss of traction and gravity. This type of instability, which is different from tip-over, can provoke uncontrolled motion or get the vehicle stuck. This paper proposes slide-down prevention by real-time computation of a straightforward stability margin for a given ground-wheel friction coefficient. This margin is applied to the case study of Lazaro, a hybrid skid-steer mobile robot with caster-leg mechanism that allows tests with four or five wheel contact points. Experimental results for both ADAMS simulations and the actual vehicle demonstrate the effectiveness of the proposed approach.

Description

Bibliographic citation

3rd International Conference on Mechatronics and Robotics Engineering, Paris, France, February 8-12, 2017

Endorsement

Review

Supplemented By

Referenced by