Multiobjective electric vehicle charging station locations in a city scale area: Malaga study case.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

This article presents a multiobjective variation of the problem of locating electric vehicle charging stations (EVCS) in a city known as the Multiobjective Electric Vehicle Charging Stations Locations (MO-EVCS-L) problem. MO-EVCS-L considers two conflicting objectives: maximizing the quality of service of the charging station network and minimizing the deployment cost when installing different types of charging stations. Two multiobjective metaheuristics are proposed to address MO-EVCS-L: the Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) and the Strength Pareto Evolutionary Algorithm, version 2 (SPEA2). The experimental analysis is performed on a real-world case study defined in Malaga, Spain, and it compares the proposed approaches with a baseline algorithm. Results show that the SPEA2 computes the most competitive solutions, even though both metaheuristics found an accurate set of solutions that provide different trade-offs between the quality of service and the installation costs.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by