Robustness of Generalized Linear Mixed Models for Split-Plot Designs with Binary Data.

dc.centroFacultad de Psicología y Logopediaes_ES
dc.contributor.authorBono Cabré, Roser
dc.contributor.authorAlarcón-Postigo, Rafael
dc.contributor.authorGarcía-Castro, F. Javier
dc.contributor.authorBlanca-Mena, María José
dc.date.accessioned2023-12-19T13:34:38Z
dc.date.available2023-12-19T13:34:38Z
dc.date.created2023
dc.date.issued2023-04-27
dc.departamentoPsicobiología y Metodología de las Ciencias del Comportamiento
dc.description.abstractThis paper examined the robustness of the generalized linear mixed model (GLMM). The GLMM estimates fixed and random effects, and it is especially useful when the dependent variable is binary. It is also useful when the dependent variable involves repeated measures, since it can model correlation. The present study used Monte Carlo simulation to analyze the empirical Type I error rates of GLMMs in split-plot designs. The variables manipulated were sample size, group size, number of repeat-ed measures, and correlation between repeated measures. Extreme condi-tions were also considered, including small samples, unbalanced groups, and different correlation in each group (pairing between group size and correlation between repeated measures). For balanced groups, the results showed that the group effect was robust under all conditions, while for unbalanced groups the effect tended to be conservative with positive pair-ing and liberal with negative pairing. Regarding time and interaction ef-fects, the results showed, for both balanced and unbalanced groups, that: (a) The test was robust with low correlation (.2), but conservative for me-dium values of correlation (.4 and .6), and (b) the test tended to be con-servative for positive and negative pairing, especially the latter.es_ES
dc.description.sponsorshipOur work was funded by the grants PSI2016-78737-P and PID2020-113191GB-I00 (AEI/FEDER, UE) from the Spanish Ministry of Economy, Industry and Competitiveness, and the Spanish Ministry of Science and Innovation.es_ES
dc.identifier.citationBono, R., Alarcón, R., Arnau, J., García-Castro, J., & Blanca, M. J. (2023). Robustness of generalized linear mixed models for split-plot designs with binary data. Anales de Psicología, 39(2), 332-343. https://doi.org/10.6018/analesps.527421es_ES
dc.identifier.doi10.6018/analesps.527421
dc.identifier.urihttps://hdl.handle.net/10630/28366
dc.language.isoenges_ES
dc.publisherUniversidad de Murciaes_ES
dc.rightsAtribución-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectAnálisis de varianzaes_ES
dc.subjectMontecarlo, Método dees_ES
dc.subjectEstadísticaes_ES
dc.subject.otherGeneralized linear mixed modelses_ES
dc.subject.otherBinary dataes_ES
dc.subject.otherMonte Carlo simulationes_ES
dc.subject.otherType I error ratees_ES
dc.titleRobustness of Generalized Linear Mixed Models for Split-Plot Designs with Binary Data.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbd5fa94d-fdb9-4030-bfe3-1517cef9c4f7
relation.isAuthorOfPublicationa9082afc-014a-4781-8b40-9db1b21c3bf5
relation.isAuthorOfPublication.latestForDiscoverybd5fa94d-fdb9-4030-bfe3-1517cef9c4f7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023. Bono. Robustness of Generalized Linear Mixed Models for Split-Plot Designs with Binary Data.pdf
Size:
673.92 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections