PCA filtering and Probabilistic SOM for Network Intrusion Detection.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorDe la Hoz Correa, Eduardo
dc.contributor.authorDe la Hoz Franco, Emiro
dc.contributor.authorOrtiz-García, Andrés
dc.contributor.authorOrtega, Julio
dc.contributor.authorPrieto, Beatriz
dc.date.accessioned2023-11-23T07:25:07Z
dc.date.available2023-11-23T07:25:07Z
dc.date.issued2015-09-21
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThe growth of the Internet and, consequently, the number of interconnected computers, has exposed significant amounts of information to intruders and attackers. Firewalls aim to detect violations according to a predefined rule-set and usually block potentially dangerous incoming traffic. However, with the evolution of attack techniques, it is more difficult to distinguish anomalies from normal traffic. Different detection approaches have been proposed, including the use of machine learning techniques based on neural models such as Self-Organizing Maps (SOMs). In this paper, we present a classification approach that hybridizes statistical techniques and SOM for network anomaly detection. Thus, while Principal Component Analysis (PCA) and Fisher Discriminant Ratio (FDR) have been considered for feature selection and noise removal, Probabilistic Self-Organizing Maps (PSOM) aim to model the feature space and enable distinguishing between normal and anomalous connections. The detection capabilities of the proposed system can be modified without retraining the map, but only by modifying the units activation probabilities. This deals with fast implementations of Intrusion Detection Systems (IDS) necessary to cope with current link bandwidths.es_ES
dc.description.sponsorshipThis work has been funded by the Ministerio de Ciencia e Innovación of the Spanish Government and FEDER Funds under Project no. TIN2012-32039. The authors would like to thank the reviewers for their useful comments and suggestions.es_ES
dc.identifier.citationOrtiz, Andrés & Hoz, Eduardo & De la Hoz, Emiro & Ortega, Julio & Prieto, Beatriz. (2014). PCA filtering and Probabilistic SOM for Network Intrusion Detection. Neurocomputing.es_ES
dc.identifier.doi10.1016/j.neucom.2014.09.083
dc.identifier.urihttps://hdl.handle.net/10630/28118
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEstadística bayesianaes_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAnálisis en componentes principaleses_ES
dc.subjectSeguridad informáticaes_ES
dc.subject.otherProbabilistic SOMes_ES
dc.subject.otherBayesian SOMes_ES
dc.subject.otherIDSes_ES
dc.subject.otherSelf-Organizing Mapses_ES
dc.subject.otherPCA filteringes_ES
dc.titlePCA filtering and Probabilistic SOM for Network Intrusion Detection.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d9e81fc-5f53-42ea-82c8-809b9defd772
relation.isAuthorOfPublication.latestForDiscovery5d9e81fc-5f53-42ea-82c8-809b9defd772

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NEUCOM_2015.pdf
Size:
295.32 KB
Format:
Adobe Portable Document Format
Description:

Collections