Accelerating time series motif discovery in the Intel Xeon Phi KNL processor.

dc.cclicense
dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorFernández-Vega, Iván
dc.contributor.authorVillegas Fernández, Alejandro
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián
dc.contributor.authorPlata-González, Óscar Guillermo
dc.date.accessioned2020-02-11T11:59:06Z
dc.date.available2020-02-11T11:59:06Z
dc.date.created2020
dc.date.issued2020-02-11
dc.departamentoArquitectura de Computadores
dc.descriptionPresented at HiPEAC Conference 2020, Bologna (Italy)en_US
dc.description.abstractTime series analysis is an important research topic of great interest in many fields. However, the memory-bound nature of the state-of-the-art algorithms limits the execution performance in some processor architectures. We analyze the Matrix Profile algorithm from the performance viewpoint in the context of the Intel Xeon Phi Knights Landing architecture (KNL). The experimental evaluation shows a performance improvement up to 190x with respect to the sequential execution and that the use of the HBM memory improves performance in a factor up to 5x with respect to the DDR4 memory.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
dc.identifier.urihttps://hdl.handle.net/10630/19259
dc.language.isoengen_US
dc.relation.eventdateEnero 2020en_US
dc.relation.eventplaceBologna (Italy)en_US
dc.relation.eventtitleHiPEAC Conference 2020en_US
dc.rights.accessRightsopen accessen_US
dc.subjectInformática-Congresosen_US
dc.subject.otherTime series analysisen_US
dc.subject.otherIntel Xeon Phi
dc.titleAccelerating time series motif discovery in the Intel Xeon Phi KNL processor.en_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf3eeec7d-5b4e-4ca9-abad-3cb620f46252
relation.isAuthorOfPublication34b85e22-88ce-4035-a53e-2bafb0c3310b
relation.isAuthorOfPublication.latestForDiscoveryf3eeec7d-5b4e-4ca9-abad-3cb620f46252

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hipeac2020_xeon_phi.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description: