From light to heavy alkali metal tetraphosphonates (M = Li, Na, K, Rb, Cs): cation size-induced structural diversity and waterfacilitated proton conductivity

Research Projects

Organizational Units

Journal Issue

Abstract

A family of alkali metal-based frameworks containing the tetraphosphonate ligand hexamethylenediamine- N,N,N′,N′-tetrakisIJmethylenephosphonic acid), HDTMP, is reported. A cation size-induced structural diversity, from monodimensional solids (Li+ and Na+) through layered (K+) to pillared-layered (Rb+ and Cs+) structures, was found. The proton conductivity properties of the Li compounds (hydrated and dehydrated) are reported and the influence of dehydration/rehydration processes in enhancing proton transfer processes is highlighted. Reversible changes in the dimensionality occurred upon full dehydration/rehydration with minor rearrangements in the framework, implying variations in the Li+–ligand connectivity but preserving the tetracoordination of the metal ion. The reversibly dehydrated–rehydrated sample displayed the highest proton conductivity (5 × 10−3 S cm−1 at 80 °C and 95% RH), a behavior attributed to reversible formation/ reformation of P–OIJH)–Li bonds that, in turn, provoked changes in the acidity of acid groups and water mobility in the temperature range of impedance measurements.

Description

Bibliographic citation

Salcedo, I., Colodrero, R., Bazaga-García, M., Vasileiou, A., Papadaki, M., Olivera-Pastor, P., Infantes-Molina, A., Losilla, E., Mezei, G., Cabeza, A., & Demadis, K. (2018). From light to heavy alkali metal tetraphosphonates (M = Li, Na, K, Rb, Cs): cation size-induced structural diversity and water-facilitated proton conductivity. CrystEngComm, 20(47), 7648–7658. https://doi.org/10.1039/C8CE01351A

Collections

Endorsement

Review

Supplemented By

Referenced by