Detection of indigenous organic matter in rocks from the interpretation of carbon molecular forms in the laser-induced plasma.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorGarcía-Gómez, Laura
dc.contributor.authorCabalín-Robles, Luisa María
dc.contributor.authorLucena Navarro, Patricia
dc.contributor.authorDelgado-Pérez, Tomás
dc.contributor.authorFortes-Román, Francisco Javier
dc.contributor.authorLaserna-Vázquez, José Javier
dc.date.accessioned2023-10-03T06:50:11Z
dc.date.available2023-10-03T06:50:11Z
dc.date.created2023
dc.date.issued2023
dc.departamentoQuímica Analítica
dc.description.abstractOil shale, a sedimentary rock containing organic matter and a variety of inorganic minerals including carbonates and kerogens, serves as a significant source of organic material on Earth [1]. Kerogen, the most abundant form of organic matter, differs in chemical composition based on the microorganisms that contributed to its formation [2]. Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique used on the Mars rover, allowing elemental characterization of Martian rocks, soils, and sediments. This study presents the first-ever detection of natural organic matter in oil shale using LIBS under simulated Martian conditions. Through an analysis of emitting species including CN and C2, LIBS successfully identifies the presence of organic compounds in this sedimentary rock. The ability to detect and characterize natural organic matter in oil shale, known for its potential to suggest the existence of ancient life, holds significant relevance in astrobiology. Furthermore, this information contributes to the identification of biosignatures and aids in the development of planetary exploration strategies. Oil shale samples were analyzed using LIBS under simulated Martian conditions after being crushed, pressed into pellets, and subjected to pyrolysis to remove organic matter. The analysis revealed significant changes in the infrared spectra, confirming the absence of aliphatic hydrocarbons after pyrolysis [3]. The LIBS results demonstrated the presence of molecular species associated with hydrocarbons, such as CN and C2, through distinct spectral emissions. The absence of these emissions in the pyrolyzed sample further supported the detection of organic matter originating from kerogen.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27723
dc.language.isoenges_ES
dc.relation.eventdateDel 19 al 22 de Septiembrees_ES
dc.relation.eventplaceMadrides_ES
dc.relation.eventtitleEuropean Astobiology Network Association (EANA) 2023 Conferencees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectExobiologíaes_ES
dc.subjectEspectroscopía de plasma inducido por láseres_ES
dc.subjectRocas sedimentariases_ES
dc.subject.otherOrganic matteres_ES
dc.subject.otherLIBSes_ES
dc.subject.otherMartian conditionses_ES
dc.subject.otherSedimentary rockes_ES
dc.titleDetection of indigenous organic matter in rocks from the interpretation of carbon molecular forms in the laser-induced plasma.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication676e2df1-261e-4441-84ba-4185f4571711
relation.isAuthorOfPublication9a4ef9eb-9980-49a2-9a20-f52f3bc97e5d
relation.isAuthorOfPublicationbb2ed608-e5d9-4a64-af21-acffbda5ab73
relation.isAuthorOfPublication5701fff5-885c-46bd-87b0-3c7bf3935d6c
relation.isAuthorOfPublication.latestForDiscovery676e2df1-261e-4441-84ba-4185f4571711

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
abstract.pdf
Size:
813.28 KB
Format:
Adobe Portable Document Format
Description: