Best rank-k approximations for tensors: generalizing Eckart–Young

dc.contributor.authorDraisma, Jan
dc.contributor.authorOttaviani, Giorgio
dc.contributor.authorTocino-Sánchez, Alicia
dc.date.accessioned2024-09-26T08:00:37Z
dc.date.available2024-09-26T08:00:37Z
dc.date.issued2018
dc.departamentoMatemática Aplicada
dc.description.abstractGiven a tensor f in a Euclidean tensor space, we are interested in the critical points of the distance function from f to the set of tensors of rank at most k, which we call the critical rank-at-most-k tensors for f. When f is a matrix, the critical rank-one matrices for f correspond to the singular pairs of f. The critical rank-one tensors for f lie in a linear subspace , the critical space of f. Our main result is that, for any k, the critical rank-at-most-k tensors for a sufficiently general f also lie in the critical space . This is the part of Eckart–Young Theorem that generalizes from matrices to tensors. Moreover, we show that when the tensor format satisfies the triangle inequalities, the critical space is spanned by the complex critical rank-one tensors. Since f itself belongs to , we deduce that also f itself is a linear combination of its critical rank-one tensors.es_ES
dc.identifier.citationDraisma, J., Ottaviani, G. & Tocino, A. Best rank-k approximations for tensors: generalizing Eckart–Young. Res Math Sci 5, 27 (2018). https://doi.org/10.1007/s40687-018-0145-1es_ES
dc.identifier.doi10.1007/s40687-018-0145-1
dc.identifier.urihttps://hdl.handle.net/10630/33361
dc.language.isoenges_ES
dc.publisherSpringer Linkes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectTensores (Álgebra)es_ES
dc.subject.otherTensores_ES
dc.subject.otherEckart–Young Theoremes_ES
dc.subject.otherBest rank-k approximationes_ES
dc.titleBest rank-k approximations for tensors: generalizing Eckart–Younges_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc35dd6ed-eb9a-4f1c-a212-0720020fda9a
relation.isAuthorOfPublication.latestForDiscoveryc35dd6ed-eb9a-4f1c-a212-0720020fda9a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bestrankapprox2018_publicada.pdf
Size:
555.43 KB
Format:
Adobe Portable Document Format
Description:

Collections