A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorCasilari-Pérez, Eduardo
dc.contributor.authorLora Rivera, Raúl
dc.contributor.authorGarcía-Lagos, Francisco
dc.date.accessioned2025-01-21T11:13:17Z
dc.date.available2025-01-21T11:13:17Z
dc.date.issued2020
dc.departamentoTecnología Electrónica
dc.description.abstractDue to the repercussion of falls on both the health and self-sufficiency of older people and on the financial sustainability of healthcare systems, the study of wearable fall detection systems (FDSs) has gained much attention during the last years. The core of a FDS is the algorithm that discriminates falls from conventional Activities of Daily Life (ADLs). This work presents and evaluates a convolutional deep neural network when it is applied to identify fall patterns based on the measurements collected by a transportable tri-axial accelerometer. In contrast with most works in the related literature, the evaluation is performed against a wide set of public data repositories containing the traces obtained from diverse groups of volunteers during the execution of ADLs and mimicked falls. Although the method can yield very good results when it is hyper-parameterized for a certain dataset, the global evaluation with the other repositories highlights the difficulty of extrapolating to other testbeds the network architecture that was configured and optimized for a particular dataset.es_ES
dc.description.sponsorshipThis work was supported by FEDER Funds (under grant UMA18-FEDERJA-022) and Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech.es_ES
dc.identifier.citationCasilari, E., Lora-Rivera, R., & García-Lagos, F. (2020). A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets. Sensors, 20(5), 1466. https://doi.org/10.3390/s20051466es_ES
dc.identifier.doi10.3390/s20051466
dc.identifier.urihttps://hdl.handle.net/10630/36634
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAccidentes domésticos - Prevención - Efectos de las innovaciones tecnológicases_ES
dc.subject.otherFall detection systemes_ES
dc.subject.otherAccelerometeres_ES
dc.subject.otherBody sensor networkses_ES
dc.subject.otherClassification algorithmses_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherWearable sensorses_ES
dc.titleA study on the application of convolutional neural networks to fall detection evaluated with multiple public datasetses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationb00113ce-90f4-46b3-a2ba-507489e804c7
relation.isAuthorOfPublication7c037c2a-75ca-4e26-abf5-325bbd186b71
relation.isAuthorOfPublication.latestForDiscoveryb00113ce-90f4-46b3-a2ba-507489e804c7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020_A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections