Evaluación del impacto del Noisy Neighbour en redes móviles virtualizadas

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorMuro, Francisco
dc.contributor.authorBaena-Martínez, Eduardo
dc.contributor.authorFortes-Rodríguez, Sergio
dc.contributor.authorMikkelsen, Lars
dc.contributor.authorDieudonne, Michael
dc.contributor.authorTorrecilla, Joaquín
dc.contributor.authorSethu, Ashok
dc.contributor.authorBarco-Moreno, Raquel
dc.date.accessioned2021-10-06T11:14:28Z
dc.date.available2021-10-06T11:14:28Z
dc.date.created2021-10-06
dc.date.issued2021-09
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThe enhancement of virtualization in new generation cellular networks involves the arising of new paradigms in network management. Network Slicing is known as one of the key enablers for the wide range of different high QoS demanding services that are expected to be supported by 5G. The correct sharing of the underlying resources implies a complex architecture that makes virtualization difficult to be full controllable. The Noisy Neighbour is identified as an entity that uses most of the underlying resources, while other virtual units are suffering a lack of them. This work presents an emulated 5G Noisy Neighbour scenario, in which the impact of this entity is evaluated through the Virtual Network Functions of the 5G Core, in order to assess the degradation that KPIs suffer when a Noisy Neighbour appears. The present work also evaluates the effectiveness of a Machine Learning Noisy Neighbour identification model, based on the metrics gathered from the proposed framework, and proposes the application of Artificial Intelligence for predicting network performance, based on network inputs and CPU resources used by the Virtual Network Functions, and a prediction model to forecast the amount of CPU resources that may be demanded by the network in each moment. This approach intends to enhance the resources awareness in a virtualized cellular network, what is posed as crucial for efficiently managing the Noisy Neighbour problem.es_ES
dc.description.sponsorshipEste trabajo ha sido financiado por la Junta de Andalucía y el ERDF en el marco del proyecto IA2MON-5G - “Inteligencia Artificial para el Análisis y Monitorización de Redes de Comunicación 5G” (Ref. UMA-CEIATECH-13, “Proyecto singular de actuaciones de transferencia del conocimiento CEI Andalucía TECH. Ecosistema innovador con inteligencia artificial para Andalucía 2025”) y beca postdoctoral (Ref., DOC_01154, “selección de personal investigador doctor convocado mediante Resolución de 21 de mayo de 2020”, PAIDI 2020). También ha sido parcialmente financiado por la Universidad de Málaga, a través del I Plan Propio de Investigación y Transferencia. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/22965
dc.language.isospaes_ES
dc.relation.eventdate20-24 de septiembre de 2021es_ES
dc.relation.eventplaceVigo, Españaes_ES
dc.relation.eventtitleXXXVI Simposium Nacional de la Unión Científica Internacional de Radioes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTecnología 5Ges_ES
dc.subjectTelecomunicaciones, Sistemas dees_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherSoftware Defined Networkinges_ES
dc.subject.other5Ges_ES
dc.subject.otherRedes móvileses_ES
dc.subject.otherNetwork Function Virtualizationes_ES
dc.subject.otherNetwork Slicinges_ES
dc.subject.otherNoisy Neighboures_ES
dc.subject.otherMachine Learninges_ES
dc.titleEvaluación del impacto del Noisy Neighbour en redes móviles virtualizadases_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationfc73de95-8b85-4ca7-a517-13411e7ef743
relation.isAuthorOfPublication26bdef43-c88e-42b1-a07a-b2ece6b893b6
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryfc73de95-8b85-4ca7-a517-13411e7ef743

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RESUMEN URSI PACO 2021.pdf
Size:
329.86 KB
Format:
Adobe Portable Document Format
Description: