Synchrotron radiation FTIR microspectroscopy enables measuring dynamic cell identity patterning during human 3D differentiation.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorDučić, Tanja
dc.contributor.authorRodríguez-Yáñez, Francisco
dc.contributor.authorGonzález-Muñoz, María Elena
dc.date.accessioned2025-06-03T11:25:00Z
dc.date.available2025-06-03T11:25:00Z
dc.date.issued2025-05-21
dc.departamentoBiología Celular, Genética y Fisiologíaes_ES
dc.description.abstractHuman cell fate specification, particularly in neural development, is difficult to study due to limited access to embryonic tissues and differences from animal models. Human induced pluripotent stem cells (hiPSCs) and 3D organoid models enable the study of early human neural development, surpassing limitations of 2D cultures by incorporating crucial cell-cell and cell-matrix interactions. In this study, we used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to examine biomolecular profiles of 3D-differentiated organoids, specifically embryoid bodies (EBs) and neural spheroids (NS), derived from hiPSCs. SR-FTIR allowed us to analyze these organoids’ cellular identity at a biomolecular level, offering a holistic view that complements specific cell markers. Our findings reveal distinct biomolecular identities in 3D organoids, with differences in DNA structure, lipid saturation, phospholipid composition, and protein conformations. This approach highlights that cellular identity is shaped by more than gene expression alone; it involves unique biomolecular compositions that can be detected even in complex, multicellular environments. By demonstrating the role of molecular configuration in cell differentiation, our findings suggest that differentiation processes extend beyond genetics, involving interdependent biochemical signals. This study demonstrates the unique efficacy SR-FTIR in analyzing human-specific 3D models for investigating complex multicellular differentiation mechanisms, offering new avenues for understanding the biochemical basis of human development and disease.es_ES
dc.identifier.citationDučić T, Rodriguez-Yañez F and Gonzalez-Muñoz E (2025) Synchrotron radiation FTIR microspectroscopy enables measuring dynamic cell identity patterning during human 3D differentiation. Front. Cell Dev. Biol. 13:1569187. doi: 10.3389/fcell.2025.1569187es_ES
dc.identifier.doi10.3389/fcell.2025.1569187
dc.identifier.urihttps://hdl.handle.net/10630/38819
dc.language.isoenges_ES
dc.publisherFrontierses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFourier, Espectroscopía por transformada dees_ES
dc.subjectBiomoléculases_ES
dc.subjectCitologíaes_ES
dc.subjectEmbriologíaes_ES
dc.subjectCélulas - Diferenciaciónes_ES
dc.subject.otherSR-FTIRes_ES
dc.subject.otherBiomolecular conformationes_ES
dc.subject.otherIPSCes_ES
dc.subject.other3D embryoid bodieses_ES
dc.subject.otherNeural spheroidses_ES
dc.subject.otherHuman morphogenesises_ES
dc.subject.otherCell identityes_ES
dc.titleSynchrotron radiation FTIR microspectroscopy enables measuring dynamic cell identity patterning during human 3D differentiation.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationfb92caee-eee5-41f6-9e58-601d4ea47b65
relation.isAuthorOfPublication.latestForDiscoveryfb92caee-eee5-41f6-9e58-601d4ea47b65

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fcell-2-1569187-1.pdf
Size:
29.07 MB
Format:
Adobe Portable Document Format
Description:
Artículo Publicado
Download

Description: Artículo Publicado

Collections