A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency
| dc.centro | E.T.S.I. Telecomunicación | es_ES |
| dc.contributor.author | Cano-Domingo, Carlos | |
| dc.contributor.author | Stoean, Ruxandra | |
| dc.contributor.author | Joya-Caparrós, Gonzalo | |
| dc.contributor.author | Novas-Castellano, Nuria | |
| dc.contributor.author | Fernández-Ros, Manuel | |
| dc.contributor.author | Gázquez-Parra, José A. | |
| dc.date.accessioned | 2026-01-09T12:07:24Z | |
| dc.date.available | 2026-01-09T12:07:24Z | |
| dc.date.issued | 2023-02 | |
| dc.departamento | Tecnología Electrónica | es_ES |
| dc.description.abstract | The Schumann Resonances arise from the constructive interference of dozens of near-simultaneous lightning strikes every second, mostly located in the tropics. Characterizing the Schumann Resonance signal variation is a complex task due to the number of variables affecting the electromagnetic composition of the ionosphere and the Earth. We describe a novel approach for investigating the behavior of this variation by focusing on specific hours of the day. This study further explores this preliminary influence by means of a machine learning framework composed of six conceptually different algorithms. Fourteen external variables, related to the ionosphere condition, are considered as the predictors for the monthly Schumann Resonance frequency variation along five years of real data, for each of the first six modes and separated by the hour of the day. The results provide a clear evidence of the importance of selecting a particular hour to observe the influence of the Ionosphere parameters on the Schumann Resonance frequency variation. | es_ES |
| dc.description.sponsorship | Andalusian Institute of Geophysics. The Ministry of Economics and Competitiveness of Spain | es_ES |
| dc.description.sponsorship | Innovation, Science and Enterprise, Andalusian Regional Government | es_ES |
| dc.description.sponsorship | European Union FEDER Program and CIAMBITAL Group | es_ES |
| dc.description.sponsorship | University of Almeria | es_ES |
| dc.description.sponsorship | European Regional Development Fund (FEDER). | es_ES |
| dc.description.sponsorship | Romanian Ministry of Research and Innovation | es_ES |
| dc.description.sponsorship | Electronics Technology Department of the University of Malaga | es_ES |
| dc.identifier.citation | Carlos Cano-Domingo, Ruxandra Stoean, Gonzalo Joya, Nuria Novas, Manuel Fernandez-Ros, Jose Antonio Gazquez, A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency, Measurement, Volume 208, 2023, 112426, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2022.112426. (https://www.sciencedirect.com/science/article/pii/S0263224122016232) | es_ES |
| dc.identifier.doi | 10.1016/j.measurement.2022.112426 | |
| dc.identifier.uri | https://hdl.handle.net/10630/41391 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Resonancia | es_ES |
| dc.subject.other | Schumann Resonance | es_ES |
| dc.subject.other | Extreme Low Frequency | es_ES |
| dc.subject.other | Machine Learning | es_ES |
| dc.subject.other | Ionosphere | es_ES |
| dc.subject.other | Explanatory Models | es_ES |
| dc.subject.other | Electro-Magnetic Signal Analysis | es_ES |
| dc.title | A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 39cdaa1a-9f58-44de-a638-781ee086cd05 | |
| relation.isAuthorOfPublication.latestForDiscovery | 39cdaa1a-9f58-44de-a638-781ee086cd05 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0263224122016232-main.pdf
- Size:
- 3.17 MB
- Format:
- Adobe Portable Document Format
- Description:

