A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorCano-Domingo, Carlos
dc.contributor.authorStoean, Ruxandra
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.contributor.authorNovas-Castellano, Nuria
dc.contributor.authorFernández-Ros, Manuel
dc.contributor.authorGázquez-Parra, José A.
dc.date.accessioned2026-01-09T12:07:24Z
dc.date.available2026-01-09T12:07:24Z
dc.date.issued2023-02
dc.departamentoTecnología Electrónicaes_ES
dc.description.abstractThe Schumann Resonances arise from the constructive interference of dozens of near-simultaneous lightning strikes every second, mostly located in the tropics. Characterizing the Schumann Resonance signal variation is a complex task due to the number of variables affecting the electromagnetic composition of the ionosphere and the Earth. We describe a novel approach for investigating the behavior of this variation by focusing on specific hours of the day. This study further explores this preliminary influence by means of a machine learning framework composed of six conceptually different algorithms. Fourteen external variables, related to the ionosphere condition, are considered as the predictors for the monthly Schumann Resonance frequency variation along five years of real data, for each of the first six modes and separated by the hour of the day. The results provide a clear evidence of the importance of selecting a particular hour to observe the influence of the Ionosphere parameters on the Schumann Resonance frequency variation.es_ES
dc.description.sponsorshipAndalusian Institute of Geophysics. The Ministry of Economics and Competitiveness of Spaines_ES
dc.description.sponsorshipInnovation, Science and Enterprise, Andalusian Regional Governmentes_ES
dc.description.sponsorshipEuropean Union FEDER Program and CIAMBITAL Groupes_ES
dc.description.sponsorshipUniversity of Almeriaes_ES
dc.description.sponsorshipEuropean Regional Development Fund (FEDER).es_ES
dc.description.sponsorshipRomanian Ministry of Research and Innovationes_ES
dc.description.sponsorshipElectronics Technology Department of the University of Malagaes_ES
dc.identifier.citationCarlos Cano-Domingo, Ruxandra Stoean, Gonzalo Joya, Nuria Novas, Manuel Fernandez-Ros, Jose Antonio Gazquez, A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency, Measurement, Volume 208, 2023, 112426, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2022.112426. (https://www.sciencedirect.com/science/article/pii/S0263224122016232)es_ES
dc.identifier.doi10.1016/j.measurement.2022.112426
dc.identifier.urihttps://hdl.handle.net/10630/41391
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectResonanciaes_ES
dc.subject.otherSchumann Resonancees_ES
dc.subject.otherExtreme Low Frequencyes_ES
dc.subject.otherMachine Learninges_ES
dc.subject.otherIonospherees_ES
dc.subject.otherExplanatory Modelses_ES
dc.subject.otherElectro-Magnetic Signal Analysises_ES
dc.titleA Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequencyes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery39cdaa1a-9f58-44de-a638-781ee086cd05

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0263224122016232-main.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:

Collections