Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorDomínguez-Merino, Enrique
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorRoé-Vellvé, Núria
dc.date.accessioned2024-09-23T08:48:35Z
dc.date.available2024-09-23T08:48:35Z
dc.date.issued2020-07-20
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractThe image acquisition process in the field of magnetic resonance imaging (MRI) does not always provide high resolution results that may be useful for a clinical analysis. Super-resolution (SR) techniques manage to increase the image resolution, being especially effective those based on examples that determine a correspondence between patterns of low resolution and high resolution. Deep learning neural networks have been applied in recent years to estimate this association with very competitive results. In this work, the starting point is a convolutional neuronal network to which a regularly spaced shifting mechanism over the input image is applied, with the aim of substantially improving the quality of the resulting image. This hybrid proposal has been compared with several SR techniques using the peak signal-to-noise ratio, structural similarity index and Bhattacharyya coefficient metrics. The results obtained on different MR images show a considerable improvement both in the restored image and in the residual image without an excessive increase in computing time.es_ES
dc.identifier.citationThurnhofer-Hemsi, K., Lopez-Rubio, E., Dominguez, E., Luque-Baena, R. M., & Roé-Vellvé, N. (2020). Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting. Neurocomputing, 398, 314-327.es_ES
dc.identifier.doi10.1016/j.neucom.2019.05.107
dc.identifier.urihttps://hdl.handle.net/10630/32807
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectImágenes por resonancia magnéticaes_ES
dc.subject.otherMagnetic resonance imaginges_ES
dc.subject.otherSuper resolutiones_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherSupervised learninges_ES
dc.titleDeep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shiftinges_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep learning-based SR of 3D MRI by Regularly Spaced Shifting.pdf
Size:
7.07 MB
Format:
Adobe Portable Document Format
Description:
Versión aceptada del artículo
Download

Description: Versión aceptada del artículo

Collections