Transfer learning or design a custom CNN for tactile object recognition

dc.centroEscuela de Ingenierías Industrialesen_US
dc.contributor.authorGandarias, Juan Manuel
dc.contributor.authorPastor-Martín, Francisco
dc.contributor.authorMuñoz-Ramírez, Antonio José
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.date.accessioned2018-10-29T11:06:58Z
dc.date.available2018-10-29T11:06:58Z
dc.date.created2018
dc.date.issued2018-10-29
dc.departamentoIngeniería de Sistemas y Automática
dc.descriptionInternational Workshop on Robotac: New Progress in Tactile Perception and Learning in Roboticsen_US
dc.description.abstractNovel tactile sensors allow treating pressure lectures as standard images due to its highresolution. Therefore, computer vision algorithms such as Convolutional Neural Networks (CNNs) can be used to identify objects in contact. In this work, a high-resolution tactile sensor has been attached to a robotic end-effector to identify objects in contact. Moreover, two CNNs-based approaches have been tested in an experiment of classification of pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB images dataset and a custom-made CNN trained from scratch with tactile information. A comparative study of performance between them has been carried out.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish project DPI2015-65186-R, the European Commission under grant agreement BES-2016-078237, the educational project PIE-118 of the University of Malagaen_US
dc.identifier.urihttps://hdl.handle.net/10630/16729
dc.language.isoengen_US
dc.relation.eventdate01-10-2018en_US
dc.relation.eventplaceMadriden_US
dc.relation.eventtitle2018 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2018en_US
dc.rights.accessRightsopen accessen_US
dc.subjectSensoresen_US
dc.subject.otherTransfer learningen_US
dc.subject.otherCustom CNNen_US
dc.subject.otherTactile object recognitionen_US
dc.titleTransfer learning or design a custom CNN for tactile object recognitionen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8b79f9eb-0b0e-412a-b963-c18b48fa292a
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication.latestForDiscovery8b79f9eb-0b0e-412a-b963-c18b48fa292a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poster_RoboTac_Gandarias.pdf
Size:
774.06 KB
Format:
Adobe Portable Document Format
Description:
Poster de presentación
Download

Description: Poster de presentación