SPIN-Based Linear Temporal Logic Path Planning for Ground Vehicle Missions with Motion Constraints on Digital Elevation Models

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorToscano-Moreno, Manuel
dc.contributor.authorMandow, Anthony
dc.contributor.authorMartínez-Sánchez, María Alcázar
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.date.accessioned2025-01-30T08:16:00Z
dc.date.available2025-01-30T08:16:00Z
dc.date.issued2024
dc.departamentoInstituto Universitario de Investigación en Ingeniería Mecatrónica y Sistemas Ciberfísicos
dc.description.abstractLinear temporal logic (LTL) formalism can ensure the correctness of mobile robot planning through concise, readable, and verifiable mission specifications. For uneven terrain, planning must consider motion constraints related to asymmetric slope traversability and maneuverability. However, even though model checker tools like the open-source Simple Promela Interpreter (SPIN) include search optimization techniques to address the state explosion problem, defining a global LTL property that encompasses both mission specifications and motion constraints on digital elevation models (DEMs) can lead to complex models and high computation times. In this article, we propose a system model that incorporates a set of uncrewed ground vehicle (UGV) motion constraints, allowing these constraints to be omitted from LTL model checking. This model is used in the LTL synthesizer for path planning, where an LTL property describes only the mission specification. Furthermore, we present a specific parameterization for path planning synthesis using a SPIN. We also offer two SPIN-efficient general LTL formulas for representative UGV missions to reach a DEM partition set, with a specified or unspecified order, respectively. Validation experiments performed on synthetic and real-world DEMs demonstrate the feasibility of the framework for complex mission specifications on DEMs, achieving a significant reduction in computation cost compared to a baseline approach that includes a global LTL property, even when applying appropriate search optimization techniques on both path planners.es_ES
dc.description.sponsorshipThis research was partially funded by the Spanish Ministerio de Ciencia e Innovación, Gobierno de España, project PID2021-122944OB-I00, and co-financed by the Agencia Estatal de Investigación and the European Regional Development Fund. The first author would like to acknowledge the Spanish predoctoral grant number BES-2016-077022 from the “Subprograma Estatal de Formación del MICINN” co-financed by the European Social Fund and Universidad de Málaga.es_ES
dc.identifier.citationToscano-Moreno, Manuel, Anthony Mandow, María Alcázar Martínez, y Alfonso José García-Cerezo. «SPIN-Based Linear Temporal Logic Path Planning for Ground Vehicle Missions with Motion Constraints on Digital Elevation Models». Sensors 24, n.º 16 (2024). https://doi.org/10.3390/S24165166.es_ES
dc.identifier.doi10.3390/S24165166
dc.identifier.urihttps://hdl.handle.net/10630/37354
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLógicaes_ES
dc.subject.otherLinear temporal logices_ES
dc.subject.otherSPINes_ES
dc.subject.otherUneven terraines_ES
dc.subject.otherUncrewed ground vehiclees_ES
dc.subject.otherDigital elevation modeles_ES
dc.subject.otherPath planninges_ES
dc.subject.otherMission specificationes_ES
dc.titleSPIN-Based Linear Temporal Logic Path Planning for Ground Vehicle Missions with Motion Constraints on Digital Elevation Modelses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublicationf92173bb-8aa3-4cda-b73f-f253a9316d4f
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication.latestForDiscovery5f0a1dda-1e55-4bcd-b78a-7af23b346a79

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-24-05166.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:

Collections