Multi‐gene metabolic engineering of tomato plants results in increased fruit yield up to 23%.

Loading...
Thumbnail Image

Files

Scitific Report_2020.pdf (5.93 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Authors

Vallarino, José G.
Kubiszewski‐Jakubiak, S.
Ruf, S.
Rößner, Margit
Timm, Stefan
Bauwe, Hermann
Carrari, Fernando
Rentsch, Doris
Bock, Ralph
Sweetlove, Lee J.

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co‐limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co‐transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.

Description

Bibliographic citation

Vallarino, J.G., Kubiszewski-Jakubiak, S., Ruf, S. et al. Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci Rep 10, 17219 (2020).

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution 4.0 Internacional