Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorJose Ángel, Díaz-Francés
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2024-07-30T09:46:18Z
dc.date.available2024-07-30T09:46:18Z
dc.date.issued2024
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractTypically, deep learning models for image segmentation tasks are trained using large datasets of images annotated at the pixel level, which can be expensive and highly time-consuming. A way to reduce the amount of annotated images required for training is to adopt a semi-supervised approach. In this regard, generative deep learning models, concretely Generative Adversarial Networks (GANs), have been adapted to semi-supervised training of segmentation tasks. This work proposes MaskGDM, a deep learning architecture combining some ideas from EditGAN, a GAN that jointly models images and their segmentations, together with a generative diffusion model. With careful integration, we find that using a generative diffusion model can improve EditGAN performance results in multiple segmentation datasets, both multi-class and with binary labels. According to the quantitative results obtained, the proposed model improves multi-class image segmentation when compared to the EditGAN and DatasetGAN models, respectively, by 4.5% and 5.0%. Moreover, using the ISIC dataset, our proposal improves the results from other models by up to 11% for the binary image segmentation approach.es_ES
dc.identifier.citationose Angel Diaz-Frances et al., Semi-supervised semantic image segmen-tation by deep diffusion models and generative adversarial networks, Inter-national Journal of Neural Systems, doi: 10.1142/S0129065724500576es_ES
dc.identifier.doi10.1142/S0129065724500576
dc.identifier.urihttps://hdl.handle.net/10630/32364
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProcesado de imágeneses_ES
dc.subject.otherSemantic segmentationes_ES
dc.subject.otherSemi-supervisedes_ES
dc.subject.otherDiffusion modeles_ES
dc.titleSemi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networkses_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mask_segmentation_generation_with_diffusion_models___Jose_Angel_Diaz_Frances.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format
Description:
preprint
Download

Description: preprint

Collections