Use of artificial neural networks in the evaluation of geometrical deviations in the dry machining of the UNS A97075 (AL-ZN) alloy..

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorTrujillo Vilches, Francisco Javier
dc.contributor.authorMartín-Béjar, Sergio
dc.contributor.authorAndersson, Tobias
dc.contributor.authorHerrera-Fernández, Manuel José
dc.contributor.authorSevilla-Hurtado, Lorenzo
dc.date.accessioned2023-07-04T07:16:16Z
dc.date.available2023-07-04T07:16:16Z
dc.date.created2023
dc.date.issued2023
dc.departamentoIngeniería Civil, de Materiales y Fabricación
dc.description.abstractIn this work, an analysis of the cutting parameters influence on macro and micro geometric deviations of dry machined UNS A97075 (Al-Zn) alloy has been carried out. Specifically, the cutting speed and feed rate influence on the arithmetic mean roughness, the straightness and the circular runout of cylindrical specimens have been studied. A shallow artificial neuronal network has been used to obtain a regression model that is able to predict the value of the output variables as a function of the cutting parameters, under the cutting conditions applied. The main novelty of this study lies in obtaining a regression model of the experimental results that considers several geometric variables simultaneously, on a micro and macro scale. For this purpose, the optimal number of neurons in the hidden layer, that gives rise to a minimum error, was analysed. After the network training, most of the results (around 80%) showed a prediction error lower than 10%. These results were compared with other regression models (potential and exponential) previously developed in similar research. In all cases, the use of artificial neuronal network gave rise to the best fit, for every output variable studied. Thus, the use of artificial neuronal networks has been shown as an effective tool in obtaining regression models that combine variables of different nature simultaneously, marking a starting point for future analyses related to the influence of cutting parameters on surface integrity variables on the sustainable machining of this alloy.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27156
dc.language.isoenges_ES
dc.relation.eventdateJunio 2023es_ES
dc.relation.eventplaceSevilla, Españaes_ES
dc.relation.eventtitle10th edition of the Manufacturing Engineering Society Interantional Conferencees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAleacioneses_ES
dc.subjectRedes neuronales - Aplicaciones industrialeses_ES
dc.subject.otherLight Alloyses_ES
dc.subject.otherMachininges_ES
dc.subject.otherArtificial Neuronal Networkses_ES
dc.subject.otherExpert Systemses_ES
dc.titleUse of artificial neural networks in the evaluation of geometrical deviations in the dry machining of the UNS A97075 (AL-ZN) alloy..es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication7b2fff28-01bf-4635-a9d3-ecdcd273009d
relation.isAuthorOfPublicatione5b4a9bd-f732-4c5b-9ac1-11b8b66793bf
relation.isAuthorOfPublication8b510515-db31-4feb-b110-3db324ddf546
relation.isAuthorOfPublication.latestForDiscovery7b2fff28-01bf-4635-a9d3-ecdcd273009d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abstract_138701_20235591544 (versión final modficada).pdf
Size:
87.86 KB
Format:
Adobe Portable Document Format
Description:
Resumen
Download

Description: Resumen