Differentiation of saccadic eye movement signals

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorBecerra-García, Roberto Antonio
dc.contributor.authorGarcía-Bermúdez, Rodolfo
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.date.accessioned2026-01-09T11:44:30Z
dc.date.available2026-01-09T11:44:30Z
dc.date.issued2021-07
dc.departamentoTecnología Electrónicaes_ES
dc.descriptionThe data used in our research are synthetic signals generated using parameters computed from a population of real subjects. Is not possible to use these signals to identify any individual. All the raw data and experimental software routines are freely available at https://github.com/idertator/saccdiff (accessed on 23 July 2021). The software routines included is used to generate figures and tables used in the analysis of our research.es_ES
dc.description.abstractSaccadic electrooculograms are discrete biosignals that contain the instantaneous angular position of the human eyes as a response to saccadic visual stimuli. These signals are essential to monitor and evaluate several neurological diseases, such as Spinocerebellar Ataxia type 2 (SCA2). For this, biomarkers such as peak velocity, latency and duration are computed. To compute these biomarkers, we need to obtain the velocity profile of the signals using numerical differentiation methods. These methods are affected by the noise present in the electrooculograms, specially in subjects that suffer neurological diseases. This noise complicates the comparison of the differentiation methods using real saccadic signals because of the impossibility of establishing exact saccadic onset and offset points. In this work, we evaluate 16 differentiation methods by the design of an experiment that uses synthetic saccadic electrooculograms generated from parametric models of both healthy subjects and subjects suffering from Spinocerebellar Ataxia type 2 (SCA2). For these synthetic electrooculograms the exact velocity profile is known, hence we can use them as a reference for comparison and error computing for the tasks of saccade identification and saccade biomarker computing. Finally, we identify the best fitting method or methods for each evaluated task.es_ES
dc.description.sponsorshipAAECID-Junta de Andaluciaes_ES
dc.description.sponsorshipUniversidad de Málagaes_ES
dc.identifier.citationBecerra-García, Roberto A., Rodolfo García-Bermúdez, and Gonzalo Joya. 2021. "Differentiation of Saccadic Eye Movement Signals" Sensors 21, no. 15: 5021. https://doi.org/10.3390/s21155021es_ES
dc.identifier.doi10.3390/s21155021
dc.identifier.urihttps://hdl.handle.net/10630/41389
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.referenceshttps://github.com/idertator/saccdiffes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectMedicina - Innovaciones tecnológicases_ES
dc.subject.otherNumerical differentiationes_ES
dc.subject.otherElectrooculogramses_ES
dc.subject.otherSaccades identificationes_ES
dc.subject.otherSaccades biomarkers computinges_ES
dc.titleDifferentiation of saccadic eye movement signalses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery39cdaa1a-9f58-44de-a638-781ee086cd05

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-21-05021-v2.pdf
Size:
675.83 KB
Format:
Adobe Portable Document Format
Description:

Collections