Ground Extraction from 3D Lidar Point Clouds

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Ground extraction from three-dimensional (3D) range data is a relevant problem for outdoor navigation of unmanned ground vehicles. Even if this problem has received attention with specific heuristics and segmentation approaches, identification of ground and non-ground points can benefit from state-of-the-art classification methods, such as those included in the Matlab Classification Learner App. This paper proposes a comparative study of the machine learning methods included in this tool in terms of training times as well as in their predictive performance. With this purpose, we have combined three suitable features for ground detection, which has been applied to an urban dataset with several labeled 3D point clouds. Most of the analyzed techniques achieve good classification results, but only a few offer low training and prediction times.

Description

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works Pomares, A., Martínez, J.L., Mandow, A., Martínez, M.A., Morán, M., Morales, J. Ground extraction from 3D lidar point clouds with the Classification Learner App (2018) 26th Mediterranean Conference on Control and Automation, Zadar, Croatia, June 2018, pp.400-405. DOI: Pending

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by