A data mining system for predicting solar global spectral irradiance. Performance assessment in the spectral response ranges of thin-film photovoltaic modules

Loading...
Thumbnail Image

Files

RENE-2019_PUBLICADO_RIUMA.pdf (2.31 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd.

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Knowing the spectral distribution of solar radiation is required to estimate the performance of photovoltaic modules, especially for thin-film modules. This is not a trivial problem due to the large number of environmental factors that affect this distribution as solar radiation passes through the atmosphere. The use of techniques of artificial intelligence and data mining can help in the development of models to address this problem. A system based on these techniques is proposed to predict the solar global spectral irradiance requiring only a few meteorological variables as inputs. The evaluation of the proposed system has been carried out for different wavelengths taking into account the spectral response of different technologies of thin-film photovoltaic modules. The errors in predicting solar global spectral irradiance for wavelengths that range between 350 and 900 nm and air mass lower than 2.1 are smaller than 7% on clear-sky days and than 16% for cloudy days, which is a significant improvement on other proposed models. Moreover, an open access implementation of the developed system is available at the URI: http://fvred1.ctima.uma.es. It could be useful for engineers and companies in the fields of the environment and renewable energies.

Description

This is the accepted manuscript version submitted to Renewable Energy (17 September 2018) Available online since 22 October 2018 at https://doi.org/10.1016/j.renene.2018.10.083. Date of publication: April 2019 License: Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)

Bibliographic citation

del Campo-Ávila, J., Piliougine, M., Morales-Bueno, R., & Mora-López, L. (2019). A data mining system for predicting solar global spectral irradiance. Performance assessment in the spectral response ranges of thin-film photovoltaic modules. Renewable Energy, 133, 828-839. https://doi.org/10.1016/j.renene.2018.10.083

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional