A Framework For TV Logos Learning Using Linear Inverse Diffusion Filters For Noise Removal

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorZeljković, Vesna
dc.contributor.authorGonzález-Linares, José María
dc.contributor.authorGuil-Mata, Nicolás
dc.contributor.authorTameze, Claude
dc.contributor.authorValev, Ventzeslav
dc.date.accessioned2013-09-11T06:45:19Z
dc.date.available2013-09-11T06:45:19Z
dc.date.issued2013
dc.departamentoArquitectura de Computadores
dc.description.abstractDifferent logotypes represent significant cues for video annotations. A combination of temporal and spatial segmentation methods can be used for logo extraction from various video contents. To achieve this segmentation, pixels with low variation of intensity over time are detected. Static backgrounds can become spurious parts of these logos. This paper offers a new way to use several segmentations of logos to learn new logo models from which noise has been removed. First, we group segmented logos of similar appearances into different clusters. Then, a model is learned for each cluster that has a minimum number of members. This is done by applying a linear inverse diffusion filter to all logos in each cluster. Our experiments demonstrate that this filter removes most of the noise that was added to the logo during segmentation and it successfully copes with misclassified logos that have been wrongly added to a cluster.es_ES
dc.identifier.citationJulián R. Cózar, Vesna Zeljković, José Mª González-Linares, Nicolás Guil, Claude Tameze, Ventzeslav Valev, "A Framework For TV Logos Learning Using Linear Inverse Diffusion Filters For Noise Removal", 2013 International Conference on High Performance Computing & Simulation (HPCS 2013), pp. 621-625, 2013es_ES
dc.identifier.urihttp://hdl.handle.net/10630/5688
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights.accessRightsopen access
dc.subjectFiltros digitales (Matemáticas)es_ES
dc.subjectProcesado de señales - Técnicas digitaleses_ES
dc.subject.otherLogotypees_ES
dc.subject.otherVideo segmentationes_ES
dc.subject.otherLinear inverse diffusion filteres_ES
dc.subject.otherClusteringes_ES
dc.titleA Framework For TV Logos Learning Using Linear Inverse Diffusion Filters For Noise Removales_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication046027b0-4274-40e8-b067-d162ba047b37
relation.isAuthorOfPublication3388700c-0831-457c-9cf8-ca14cec33a15
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscovery046027b0-4274-40e8-b067-d162ba047b37

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MLPRA_2013 - Riuma.pdf
Size:
69.8 KB
Format:
Adobe Portable Document Format