3D Segmentation Method for Natural Environments based on a Geometric-Featured Voxel Map

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

This work proposes a new segmentation algorithm for three-dimensional dense point clouds and has been specially designed for natural environments where the ground is unstructured and may include big slopes, non-flat areas and isolated areas. This technique is based on a Geometric-Featured Voxel map (GFV) where the scene is discretized in constant size cubes or voxels which are classified in flat surface, linear or tubular structures and scattered or undefined shapes, usually corresponding to vegetation. Since this is not a point-based technique the computational cost is significantly reduced, hence it may be compatible with Real-Time applications. The ground is extracted in order to obtain more accurate results in the posterior segmentation process. The scene is split into objects and a second segmentation in regions inside each object is performed based on the voxel’s geometric class. The work here evaluates the proposed algorithm in various versions and several voxel sizes and compares the results with other methods from the literature. For the segmentation evaluation the algorithms are tested on several differently challenging hand-labeled data sets using two metrics, one of which is novel.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by