Fefferman-Stein inequalities for the Hardy-Littlewood maximal function on the infinite rooted k-ary tree.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorOmbrosi, Sheldy J.
dc.contributor.authorRivera Ríos, Israel P.
dc.contributor.authorSafe, Martín D.
dc.date.accessioned2024-12-03T08:12:29Z
dc.date.available2024-12-03T08:12:29Z
dc.date.issued2020-08-27
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/612es_ES
dc.description.abstractIn this paper weighted endpoint estimates for the Hardy-Littlewood maximal function on the infinite rooted k-ary tree are provided. Motivated by Naor and Tao [23] the following Fefferman-Stein estimate w ({x ∈ T : Mf(x) > λ}) ≤ cs 1 λ Z T |f(x)|M(w s )(x) 1 s dx s > 1 is settled and moreover it is shown it is sharp, in the sense that it does not hold in general if s = 1. Some examples of non trivial weights such that the weighted weak type (1, 1) estimate holds are provided. A strong Fefferman-Stein type estimate and as a consequence some vector valued extensions are obtained. In the Appendix a weighted counterpart of the abstract theorem of Soria and Tradacete on infinite trees [38] is established.es_ES
dc.identifier.citationSheldy Ombrosi, Israel P Rivera-Ríos, Martín D Safe, Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree, International Mathematics Research Notices, Volume 2021, Issue 4, February 2021, Pages 2736–2762, https://doi.org/10.1093/imrn/rnaa220es_ES
dc.identifier.doi10.1093/imrn/rnaa220
dc.identifier.urihttps://hdl.handle.net/10630/35450
dc.language.isoenges_ES
dc.publisherOxford Academices_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAnálisis matemáticoes_ES
dc.subjectDesigualdades (Matemáticas)es_ES
dc.subject.otherk-ary treees_ES
dc.subject.otherWeightes_ES
dc.subject.otherMaximal functiones_ES
dc.titleFefferman-Stein inequalities for the Hardy-Littlewood maximal function on the infinite rooted k-ary tree.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OmbrosiRiveraRiosSafe.pdf
Size:
496.03 KB
Format:
Adobe Portable Document Format
Description:

Collections