Synthetic circuit designs for earth terraformation
Loading...
Files
Description: Versión publicada
Identifiers
Publication date
Reading date
Authors
Solé, Richard
Montañez, Raúl
Durán-Nebreda, Salva
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Share
Center
Department/Institute
Keywords
Abstract
Background: Mounting evidence indicates that our planet might experience runaway effects associated to rising temperatures and ecosystem overexploitation, leading to catastrophic shifts on short time scales. Remediation scenarios capable of counterbalancing these effects involve geoengineering, sustainable practices and carbon sequestration, among others. None of these scenarios seems powerful enough to achieve the desired restoration of safe boundaries.
Presentation of the hypothesis: We hypothesize that synthetic organisms with the appropriate engineering design could be used to safely prevent declines in some stressed ecosystems and help improving carbon sequestration. Such schemes would include engineering mutualistic dependencies preventing undesired evolutionary processes. We hypothesize that some particular design principles introduce unescapable constraints to the engineered organisms that act as effective firewalls.
Testing the hypothesis: Testing this designed organisms can be achieved by using controlled bioreactor models, with single and heterogeneous populations, and accurate computational models including different scales (from genetic constructs and metabolic pathways to population dynamics).
Implications of the hypothesis: Our hypothesis heads towards a future anthropogenic action that should effectively act as Terraforming processes. It also implies a major challenge in the existing biosafety policies, since we suggest release of modified organisms as potentially necessary strategy for success.
Description
Bibliographic citation
Solé, R.V., Montañez, R. & Duran-Nebreda, S. Synthetic circuit designs for earth terraformation. Biol Direct 10, 37 (2015). https://doi.org/10.1186/s13062-015-0064-7






