Learning-based State Estimation in Distribution Systems with Limited Real-Time Measurements.

Loading...
Thumbnail Image

Files

JGV_EURO24.pdf (1.02 MB)

Description: Presentación de la conferencia

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The task of state estimation in active distribution systems faces a major challenge due to the integration of different measurements with multiple reporting rates. As a result, distribution systems are essentially unobservable in real time, indicating the existence of multiple states that result in identical values for the available measurements. Certain existing approaches utilize historical data to infer the relationship between real-time available measurements and the state. Other learning-based methods aim to estimate the measurements acquired with a delay, generating pseudo-measurements. Our paper presents a methodology that utilizes the outcome of an unobservable state estimator to exploit information on the joint probability distribution between real-time available measurements and delayed ones. Through numerical simulations conducted on a realistic distribution grid with insufficient real-time measurements, the proposed procedure showcases superior performance compared to existing state forecasting approaches and those relying on inferred pseudo-measurements.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional