Learning-based State Estimation in Distribution Systems with Limited Real-Time Measurements.
Loading...
Files
Description: Presentación de la conferencia
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Department/Institute
Keywords
Abstract
The task of state estimation in active distribution systems faces a major challenge due to the integration of different measurements with multiple reporting rates. As a result, distribution systems are essentially unobservable in real time, indicating the existence of multiple states that result in identical values for the available measurements. Certain existing approaches utilize historical data to infer the relationship between real-time available measurements and the state. Other learning-based methods aim to estimate the measurements acquired with a delay, generating pseudo-measurements. Our paper presents a methodology that utilizes the outcome of an unobservable state estimator to exploit information on the joint probability distribution between real-time available measurements and delayed ones. Through numerical simulations conducted on a realistic distribution grid with insufficient real-time measurements, the proposed procedure showcases superior performance compared to existing state forecasting approaches and those relying on inferred pseudo-measurements.
Description
Bibliographic citation
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional














