Bergman projection induced by radial weight.
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Rättyä, Jouni | |
| dc.contributor.author | Peláez-Márquez, José Ángel | |
| dc.date.accessioned | 2025-01-28T12:23:29Z | |
| dc.date.available | 2025-01-28T12:23:29Z | |
| dc.date.issued | 2021 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description | https://openpolicyfinder.jisc.ac.uk/id/publication/10115 | es_ES |
| dc.description.abstract | We establish characterizations of the radial weights $\omega$ on the unit disc such that the Bergman projection $P_\omega$, induced by $\omega$, is bounded and/or acts surjectively from $L^\infty$ to the Bloch space $\mathcal{B}$, or the dual of the weighted Bergman space $A^1_\omega$ is isomorphic to the Bloch space under the $A^2_\omega$-pairing. We also solve the problem posed by Dostani\'c in 2004 of describing the radial weights~$\omega$ such that~$P_\omega$ is bounded on the Lebesgue space~$L^p_\omega$, under a weak regularity hypothesis on the weight involved. With regard to Littlewood-Paley estimates, we characterize the radial weights~$\omega$ such that the norm of any function in $A^p_\omega$ is comparable to the norm in $L^p_\omega$ of its derivative times the distance from the boundary. This last-mentioned result solves another well-known problem on the area. All characterizations can be given in terms of doubling conditions on moments and/or tail integrals $\int_r^1\omega(t)\,dt$ of $\omega$, and are therefore easy to interpret. | es_ES |
| dc.description.sponsorship | This research was supported in part by Ministerio de Economía y Competitividad, Spain, projects PGC2018-096166-B-100; La Junta de Andalucía, project FQM210 and UMA18-FEDERJA-002; Academy of Finland project no. 268009; Vilho, Yrjö ja Kalle Foundation | es_ES |
| dc.identifier.doi | 10.1016/j.aim.2021.107950 | |
| dc.identifier.uri | https://hdl.handle.net/10630/37190 | |
| dc.language.iso | spa | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Funciones de variable compleja | es_ES |
| dc.subject.other | Bergman space | es_ES |
| dc.subject.other | Bergman projection | es_ES |
| dc.subject.other | Bloch space | es_ES |
| dc.subject.other | Bounded mean oscillation | es_ES |
| dc.subject.other | Doubling weight | es_ES |
| dc.subject.other | Littlewood-Paley formula | es_ES |
| dc.title | Bergman projection induced by radial weight. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a | |
| relation.isAuthorOfPublication.latestForDiscovery | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PelaezRattyaJournal2021.pdf
- Size:
- 692.58 KB
- Format:
- Adobe Portable Document Format
- Description:

