Human and Object Recognition with a High-resolution tactile sensor

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Keywords

Abstract

This paper 1 describes the use of two artificial intelligence methods for object recognition via pressure images from a high-resolution tactile sensor. Both meth- ods follow the same procedure of feature extraction and posterior classification based on a supervised Supported Vector Machine (SVM). The two approaches differ on how features are extracted: while the first one uses the Speeded-Up Robust Features (SURF) descriptor, the other one employs a pre-trained Deep Convolutional Neural Network (DCNN). Besides, this work shows its applica- tion to object recognition for rescue robotics, by distinguishing between differ- ent body parts and inert objects. The performance analysis of the proposed methods is carried out with an experiment with 5-class non-human and 3-class human classification, providing a comparison in terms of accuracy and compu-tational load. Finally, it is discussed how feature-extraction based on SURF can be obtained up to five times faster compared to DCNN. On the other hand, the accuracy achieved using DCNN-based feature extraction can be 11.67% superior to SURF.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional