Optimized instance segmentation by super-resolution and maximal clique generation.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorGarcía-González, Jorge
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorDomínguez-Merino, Enrique
dc.date.accessioned2025-01-28T18:22:27Z
dc.date.available2025-01-28T18:22:27Z
dc.date.issued2023-05-10
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/1823es_ES
dc.description.abstractThe rise of surveillance systems has led to exponential growth in collected data, enabling several advances in Deep Learning to exploit them and automate tasks for autonomous systems. Vehicle detection is a crucial task in the fields of Intelligent Vehicle Systems and Intelligent Transport systems, making it possible to control traffic density or detect accidents and potential risks. This paper presents an optimal meta-method that can be applied to any instant segmentation model, such as Mask R-CNN or YOLACT++. Using the initial detections obtained by these models and super-resolution, an optimized re-inference is performed allowing the detection of elements not identified a priori and improving the quality of the rest of the detections. The direct application of super-resolution is limited because instance segmentation models process images according to a fixed dimension. Therefore, in cases where the super-resolved images exceed this fixed size, the model will rescale them again, thus losing the desired effect. The advantages of this meta-method lie mainly in the fact that it is not required to modify the model architecture or re-train it. Regardless of the size of the images given as input, super-resolved areas that fit the defined dimension of the object segmentation model will be generated. After applying our proposal, experiments show an improvement of up to 8.1% for the YOLACT++ model used in the Jena sequence of the CityScapes dataset.es_ES
dc.identifier.doi10.3233/ICA-230700
dc.identifier.urihttps://hdl.handle.net/10630/37222
dc.language.isoenges_ES
dc.publisherIOS presses_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectVigilancia electrónicaes_ES
dc.subjectRedes neuronales artificialeses_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherMask R-CNNes_ES
dc.subject.otherYOLACT++es_ES
dc.subject.otherInstance segmentationes_ES
dc.subject.otherSuper- Resolutiones_ES
dc.subject.otherVehicle detectiones_ES
dc.titleOptimized instance segmentation by super-resolution and maximal clique generation.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublication.latestForDiscovery15881531-a431-477b-80d6-532058d8377c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EXTENSIÓN_IWINAC___CLIQUES_ICAE__postprint.pdf
Size:
4.38 MB
Format:
Adobe Portable Document Format
Description:

Collections