On the Use of Explainable Artificial Intelligence for the Differential Diagnosis of Pigmented Skin Lesions

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

En los últimos años, la Inteligencia Artificial Explicable (XAI) ha atraído la atención en la analítica de datos, ya que muestra un gran potencial en la interpretación de los resultados de complejos modelos de aprendizaje automático en la aplicación de problemas médicos. Se trata de que el resultado de las aplicaciones basadas en el aprendizaje automático deben ser comprendidos por los usuarios finales, especialmente en el contexto de los datos médicos, donde las decisiones deben tomarse cuidadosamente. decisiones. Como tal, se han realizado muchos esfuerzos para explicar el resultado de un modelo complejo de aprendizaje profundo en procesos de reconocimiento y clasificación de y clasificación de imágenes, como en el caso del cáncer de melanoma. Este representa un primer intento (hasta donde sabemos) de investigar experimental y técnicamente la explicabilidad de los métodos modernos de XAI modernos de XAI: explicaciones de modelos de diagnóstico interpretables locales (LIME) y Shapley Additive exPlanations (SHAP), en términos de reproducibilidad de resultados y el tiempo de ejecución en un conjunto de datos de clasificación de imágenes de melanoma. Este artículo muestra que los métodos XAI proporcionan ventajas en la interpretación de los resultados del modelo en la clasificación de imágenes de melanoma. interpretación de los resultados del modelo en la clasificación de imágenes de melanoma. Concretamente, LIME se comporta mejor que el explicador de gradiente SHAP en términos de reproducibilidad y tiempo de ejecución.

Description

Bibliographic citation

Hurtado, S., Nematzadeh, H., García-Nieto, J., Berciano-Guerrero, MÁ., Navas-Delgado, I. (2022). On the Use of Explainable Artificial Intelligence for the Differential Diagnosis of Pigmented Skin Lesions. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_26

Endorsement

Review

Supplemented By

Referenced by