Foreground object detection enhancement by adaptive super resolution for video surveillance

dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorMolina-Cabello, Miguel Ángel
dc.contributor.authorElizondo Acuña, David Alberto
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2019-09-16T07:52:09Z
dc.date.available2019-09-16T07:52:09Z
dc.date.created2019
dc.date.issued2019-09-16
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractForeground object detection is a fundamental low level task in current video surveillance systems. It is usually accomplished by keeping a model of the background at each frame pixel. Many background learning algorithms have difficulties to attain real time operation when applied directly to the output of state of the art high resolution surveillance cameras, due to the large number of pixels. Here we propose a strategy to address this problem which consists in maintaining a low resolution model of the background which is upscaled by adaptive super resolution in order to produce a foreground detection mask of the same size as the original input frame. Extensive experimental results demonstrate the suitability of our proposal, in terms of reduction of the computational load and foreground detection accuracy.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.identifier.urihttps://hdl.handle.net/10630/18348
dc.language.isoengen_US
dc.relation.eventdateSeptiembre de 2019en_US
dc.relation.eventplaceCardiff, Gales, Reino Unidoen_US
dc.relation.eventtitle30th British Machine Vision Conferenceen_US
dc.rights.accessRightsopen accessen_US
dc.subjectRedes neuronales (Informática)en_US
dc.subject.otherConvolutional neural networksen_US
dc.subject.otherHomography estimationen_US
dc.subject.otherComputer visionen_US
dc.titleForeground object detection enhancement by adaptive super resolution for video surveillanceen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbd8d08dc-ffee-4da1-9656-28204211eb1a
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoverybd8d08dc-ffee-4da1-9656-28204211eb1a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BMVC_2019___resize.pdf
Size:
472.75 KB
Format:
Adobe Portable Document Format
Description: