A novel continual learning approach for competitive neural networks

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorMaza Quiroga, Rosa María
dc.contributor.authorPalomo-Ferrer, Esteban José
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan Miguel
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2022-06-14T10:11:20Z
dc.date.available2022-06-14T10:11:20Z
dc.date.created2022-06-14
dc.date.issued2022
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractContinual learning tries to address the stability-plasticity dilemma to avoid catastrophic forgetting when dealing with non-stationary distributions. Prior works focused on supervised or reinforcement learning, but few works have considered continual learning for unsupervised learning methods. In this paper, a novel approach to provide continual learning for competitive neural networks is proposed. To this end, we have proposed a different learning rate function that can cope with non-stationary distributions by adapting the model to learn continuously. Experimental results performed with different synthetic images that change over time confirm the performance of our proposal.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Teches_ES
dc.identifier.urihttps://hdl.handle.net/10630/24361
dc.language.isoenges_ES
dc.relation.eventdate31 mayo /2022es_ES
dc.relation.eventplacePuerto de la Cruz (Tenerife), Españaes_ES
dc.relation.eventtitle9th International Work-Conference on the Interplay Between Natural and Artificial Computationes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectAprendizajees_ES
dc.subject.otherContinual learninges_ES
dc.subject.otherUnsupervised learninges_ES
dc.subject.otherCompetitive neural networkses_ES
dc.titleA novel continual learning approach for competitive neural networkses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationee7a0035-e256-42bb-ac83-bc46a618cd04
relation.isAuthorOfPublication5d96d5b2-9546-44c8-a1b3-1044a3aee34f
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoveryee7a0035-e256-42bb-ac83-bc46a618cd04

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper IWINAC 2022.pdf
Size:
499.59 KB
Format:
Adobe Portable Document Format
Description: