Aplicación de técnicas de aprendizaje automático para la asignación y autoescalado de Funciones de Red Virtuales en Redes Móviles

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Sedeño Guerrero, Francisco José

Collaborators

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

VNF placement es el nombre dado al problema de asignar distintas funciones de red virtuales (virtual network functions o VNF) a distintos nodos. Existen varios criterios distintos de asignación óptima, como puede ser minimizar el tiempo que tarda una VNF en ejecutarse o simplemente asignar la VNF al nodo con más potencia disponible en el momento de la asignación. En este Trabajo de Fin de Grado el objetivo es realizar esta asignación utilizando como criterio el consumo mínimo de energía de las tareas. Averiguar la energía que consume un nodo al ejecutar una VNF antes de llevarla a cabo no es una tarea sencilla, por lo tanto, en este TFG se pretende entrenar un modelo de Machine Learning para que sea capaz de predecir este consumo de energía para una VNF y un nodo dados, este resultado se conseguirá entrenando el modelo de Inteligencia Artificial con datos de experimentos previos de las ejecuciones de distintas VNF en nodos con distintas características. Para conseguir el mejor resultado obtenible con los conjuntos de datos, en el entrenamiento del modelo se han utilizado distintas técnicas de aprendizaje supervisado, se han analizado sus capacidades de generalización y, basándose en estos resultados, se ha seleccionado la mejor técnica.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional