Inner ideals of real Lie algebras
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Draper-Fontanals, Cristina | |
| dc.date.accessioned | 2022-01-23T16:44:35Z | |
| dc.date.available | 2022-01-23T16:44:35Z | |
| dc.date.created | 2022-01-21 | |
| dc.date.issued | 2022-01-17 | |
| dc.departamento | Matemática Aplicada | |
| dc.description | Póster | es_ES |
| dc.description.abstract | If $L$ is a Lie algebra, a subspace $B$ of $L$ is called an \emph{inner ideal} if $[B,[B,L]]\subset B$. This notion is inspired in Jordan algebras and it dues to [1], which used it to reconstruct the geometry defined by Tits from the corresponding Chevalley group. Soon, [2] began a sistematic study of inner ideals of Lie algebras with a view in an Artinian theory for Lie algebras (no restrictions on the dimension or on the characteristic of the field). A good compilation from the algebraic approach can be found in the recent monograph [3]. In this poster, we clasify abelian inner ideals of the finite-dimensional simple real Lie algebras. Note that the classification of the abelian inner ideals of the finite-dimensional simple complex Lie algebras was previously obtained in [4], which provided a concrete description up to automorphisms of these inner ideals in terms of roots. Both classifications are related, since clearly if $B$ is an inner ideal of a real algebra $L$, then the complexification $B^\mathbb C=B\otimes_{\mathbb R}\mathbb C$ is an inner ideal of $L^\mathbb C | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/23651 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | Del 17 al 21 de enero de 2022 | es_ES |
| dc.relation.eventplace | Ciudad Real (España) | es_ES |
| dc.relation.eventtitle | Congreso Bienal de la Real Sociedad Matemática Española RSME 2022 | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Lie, Algebras de | es_ES |
| dc.subject | Cuerpos algebráicos | es_ES |
| dc.subject.other | inner ideals | es_ES |
| dc.subject.other | real field | es_ES |
| dc.title | Inner ideals of real Lie algebras | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c3a54244-ac23-4d90-9226-98ea8615c23f | |
| relation.isAuthorOfPublication.latestForDiscovery | c3a54244-ac23-4d90-9226-98ea8615c23f |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- RSME2022-Draper-poster.pdf
- Size:
- 109.11 KB
- Format:
- Adobe Portable Document Format
- Description:
- Resumen del póster
Description: Resumen del póster

