Inner ideals of real Lie algebras

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorDraper-Fontanals, Cristina
dc.date.accessioned2022-01-23T16:44:35Z
dc.date.available2022-01-23T16:44:35Z
dc.date.created2022-01-21
dc.date.issued2022-01-17
dc.departamentoMatemática Aplicada
dc.descriptionPósteres_ES
dc.description.abstractIf $L$ is a Lie algebra, a subspace $B$ of $L$ is called an \emph{inner ideal} if $[B,[B,L]]\subset B$. This notion is inspired in Jordan algebras and it dues to [1], which used it to reconstruct the geometry defined by Tits from the corresponding Chevalley group. Soon, [2] began a sistematic study of inner ideals of Lie algebras with a view in an Artinian theory for Lie algebras (no restrictions on the dimension or on the characteristic of the field). A good compilation from the algebraic approach can be found in the recent monograph [3]. In this poster, we clasify abelian inner ideals of the finite-dimensional simple real Lie algebras. Note that the classification of the abelian inner ideals of the finite-dimensional simple complex Lie algebras was previously obtained in [4], which provided a concrete description up to automorphisms of these inner ideals in terms of roots. Both classifications are related, since clearly if $B$ is an inner ideal of a real algebra $L$, then the complexification $B^\mathbb C=B\otimes_{\mathbb R}\mathbb C$ is an inner ideal of $L^\mathbb Ces_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/23651
dc.language.isoenges_ES
dc.relation.eventdateDel 17 al 21 de enero de 2022es_ES
dc.relation.eventplaceCiudad Real (España)es_ES
dc.relation.eventtitleCongreso Bienal de la Real Sociedad Matemática Española RSME 2022es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectLie, Algebras dees_ES
dc.subjectCuerpos algebráicoses_ES
dc.subject.otherinner idealses_ES
dc.subject.otherreal fieldes_ES
dc.titleInner ideals of real Lie algebrases_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc3a54244-ac23-4d90-9226-98ea8615c23f
relation.isAuthorOfPublication.latestForDiscoveryc3a54244-ac23-4d90-9226-98ea8615c23f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RSME2022-Draper-poster.pdf
Size:
109.11 KB
Format:
Adobe Portable Document Format
Description:
Resumen del póster
Download

Description: Resumen del póster