Optimising Quantum Calculations Reliability via Machine Learning: The IBM Case Study.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorDahi, Zakaria Abdelmoiz
dc.contributor.authorChicano-García, José-Francisco
dc.contributor.authorLuque-Polo, Gabriel Jesús
dc.contributor.authorDelgado Alba, Iván
dc.date.accessioned2026-01-09T08:55:17Z
dc.date.available2026-01-09T08:55:17Z
dc.date.issued2025
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.descriptionTrabajo enviado a IEEE International Conference on Quantum Artificial Intelligencees_ES
dc.description.abstractThe current quantum technology depends on hardware/time-dependent features that render quantum calculations highly error-prone. Having faulty calculations generally requires redoing them, which induces an economic/computational overhead by using quantum machines/simulators. This can be problematic due to unaffordable fees, machine unavailability, or loss of quantum advantage. An alternative can be performing the calculations when the machines are in their most suitable state. This work presents a pipeline based on Machine Learning (ML), allowing users to choose the appropriate moment to perform a given computation based on the estimation of the Jensen-Shannon divergence between the noisy and ideal distributions of quantum sampling. This includes (I) an extract-transform-load data module, (II) an ML unit for quantum features forecasting and error prediction, and (III) a web-based visualisation unit. The pipeline was built/tested using 3.5 months of calibration data from three real 127-qubit IBM quantum machines. The results confirmed the applicability of the proposal in realistic scenarios.es_ES
dc.description.sponsorshipUniversidad de Málagaes_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovacion y Universidadeses_ES
dc.identifier.urihttps://hdl.handle.net/10630/41362
dc.language.isoenges_ES
dc.relation.eventdate2 a 5 de noviembre de 2025es_ES
dc.relation.eventplaceNápoles, Italiaes_ES
dc.relation.eventtitle2025 IEEE International Conference on Quantum Artificial Intelligencees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComputación cuánticaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherQuantum computinges_ES
dc.subject.otherMachine Learninges_ES
dc.titleOptimising Quantum Calculations Reliability via Machine Learning: The IBM Case Study.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublicationfbed2a0e-573c-4118-97c4-2f2e584e4688
relation.isAuthorOfPublication.latestForDiscovery6f65e289-6502-4756-871c-dbe0ca9be545

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025_QAI_ML_Assisted_Quantum_Simulation_Camera_Ready.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Manuscrito
Download

Description: Manuscrito