Regression of the Rician Noise Level in 3D Magnetic Resonance Images from the Distribution of the First Significant Digit.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMaza-Quiroga, Rosa
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLópez-Rodríguez, Domingo
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2024-05-29T10:05:41Z
dc.date.available2024-05-29T10:05:41Z
dc.date.issued2023-12-13
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractThis paper investigates the distribution characteristics of Fourier, discrete cosine, and discrete sine transform coefficients in T1 MRI images. The study reveals their adherence to Benford’s law, characterized by a logarithmic distribution of first digits. The impact of Rician noise on the first digit distribution is examined, causing deviations from the ideal distribution. A novel methodology is proposed for noise level estimation, employing metrics such as Bhattacharyya distance, Kullback-Leibler divergence, total variation distance, Hellinger distance, and Jensen-Shannon divergence. Supervised learning techniques utilize these metrics as regressors. Evaluations on MRI scans from several datasets coming from a wide range of different acquisition devices of 1.5T and 3T, comprising hundreds of patients, validate the adherence of noiseless T1 MRI frequency domain coefficients to Benford’s law. Through rigorous experimentation, our methodology has demonstrated competitiveness with established noise estimation techniques, even surpassing them in numerous conducted experiments. This research empirically supports the application of Benford’s law in transforms, offering a reliable approach for noise estimation in denoising algorithms and advancing image quality assessment.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.identifier.citationMaza-Quiroga, R.; Thurnhofer-Hemsi, K.; López-Rodríguez, D.; López-Rubio, E. Regression of the Rician Noise Level in 3D Magnetic Resonance Images from the Distribution of the First Significant Digit. Axioms 2023, 12, 1117. https://doi.org/10.3390/axioms12121117es_ES
dc.identifier.doi10.3390/axioms12121117
dc.identifier.urihttps://hdl.handle.net/10630/31430
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectInformación, Teoría de laes_ES
dc.subjectProcesado de imágeneses_ES
dc.subjectDistribución (Teoría de probabilidades)es_ES
dc.subjectImágenes por resonancia magnéticaes_ES
dc.subject.otherMRIes_ES
dc.subject.otherRician noisees_ES
dc.subject.otherBenford's lawes_ES
dc.subject.otherNoise level estimationes_ES
dc.titleRegression of the Rician Noise Level in 3D Magnetic Resonance Images from the Distribution of the First Significant Digit.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf94ec075-34f9-4b1f-9f02-4ab71d86a988
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoveryf94ec075-34f9-4b1f-9f02-4ab71d86a988

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
axioms-12-01117-v2.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:

Collections