Dataset: DEM-AIA Inclination-aware path planning data and MATLAB tools for off-road UGVs.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorToscano-Moreno, Manuel
dc.contributor.authorMandow, Anthony
dc.contributor.authorMartínez-Sánchez, María Alcázar
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.date.accessioned2025-08-29T10:57:45Z
dc.date.available2025-08-29T10:57:45Z
dc.date.issued2023
dc.departamentoInstituto Universitario de Investigación en Ingeniería Mecatrónica y Sistemas Ciberfísicoses_ES
dc.descriptionThis package provides the DEM-AIA (Digital Elevation Map – Any-Angle Inclination-Aware) trajectory planner for unmanned ground vehicles (UGVs). The planner computes feasible and efficient trajectories over digital elevation models (DEMs), explicitly considering: - Terrain slopes (pitch and roll). - Vehicle dynamic and geometric constraints (speed, center of gravity, length, width, slope tolerance). - Any-angle variant of the A* algorithm for more realistic and shorter paths. - Optional heuristic search and node re-expansion. The distribution includes both synthetic and real DEMs, MATLAB source code, precompiled MEX binaries, and a test script.es_ES
dc.descriptionMetadata: - Application domain: Off-road robotics, terrain-aware trajectory planning. - Data type: Digital Elevation Models (DEMs). - Format: MATLAB .mat. - Spatial resolution: depends on the selected DEM. - Units: meters (altitude and coordinates). - Restrictions: Distributed MEX files only run on MATLAB R2021b (Windows x64). Recompilation is required for other versions or platforms.es_ES
dc.description.abstractPlanning safe and effective trajectories for off-road unmanned ground vehicles (UGV) is a critical Artificial Intelligence (AI) challenge that can benefit from recent advances in digital elevation models (DEM) for readily capturing accurate terrain geometry. Considering path slopes is crucial to preserve stability and assess terrain traversability at feasible speeds to optimize travel time, which is highly dependent on direction (i.e., pitch and roll). In this article, we propose a new DEM-based asymmetric inclination-aware (DEM-AIA) trajectory planner for ground vehicles. The planner is an any-angle variant of the A algorithm that computes pitch and roll estimations for each segment crossing cell triangles in the line-of-sight. Furthermore, we define a non-linear velocity constraints function that integrates information about tip-over safety limitations, maximum uphill and downhill slopes for the vehicle, and asymmetric modulation of nominal flat-ground velocity for all pitch and roll combinations. The planner produces a time sub-optimal trajectory with feasible speed references for each segment crossing a cell triangle. Moreover, we provide an extensive experimental analysis of inclination-aware performance on simulated and real-world DEMs as well as a comparison with state-of-the-art path planners adapted to travel-time optimization. An executable version of the planner with parameterizable variations is publicly available.es_ES
dc.grupoIngeniería de Sistemas y Automáticaes_ES
dc.identifier.doi10.24310/riuma.39709
dc.identifier.urihttps://hdl.handle.net/10630/39709
dc.identifier.urlhttps://github.com/mToscanoMoreno/DEM-AIAes_ES
dc.language.isoenges_ES
dc.publication.year2023
dc.publisherElsevieres_ES
dc.relation.isreferencedbyDEM-AIA: Asymmetric inclination-aware trajectory planner for off-road vehicles with digital elevation models. Engineering Applications of Artificial Intelligence, 121, 105976, 2023. DOI: https://www.doi.org/10.1016/j.engappai.2023.105976es_ES
dc.relation.isreferencedbyhttps://hdl.handle.net/10630/26534es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/Ministerio de Ciencia e Innovación/Proyectos de Generación del Conocimiento 2021/PID2021-122944OB-I00/ES//SAR4.0es_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectVehículos autodirigidoses_ES
dc.subjectTeledetecciónes_ES
dc.subjectGeomáticaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)
dc.subject.otherPath planninges_ES
dc.subject.otherUnmanned ground vehiclees_ES
dc.subject.otherDigital elevation modeles_ES
dc.subject.otherInclination awarenesses_ES
dc.titleDataset: DEM-AIA Inclination-aware path planning data and MATLAB tools for off-road UGVs.es_ES
dc.typedatasetes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublicationf92173bb-8aa3-4cda-b73f-f253a9316d4f
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication.latestForDiscovery5f0a1dda-1e55-4bcd-b78a-7af23b346a79

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
readme.txt
Size:
5.38 KB
Format:
Plain Text
Description:
Fichero readme.txt con descripción detallada de los datos.
Download

Description: Fichero readme.txt con descripción detallada de los datos.

Loading...
Thumbnail Image
Name:
DEM-AIA-main.zip
Size:
5.93 MB
Format:
Archivo comprimido zip
Description:
Datos experimentales y software
Download

Description: Datos experimentales y software