On the participation of energy storage systems in reserve markets using Decision Focused Learning

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Department/Institute

Abstract

Battery Energy Storage Systems (BESSs) are particularly well-suited to deepen the decarbonisation of reserve markets, traditionally dominated by non-renewable generators. BESSs operators often rely on Predict-Then-Optimise (PTO) methods to participate in these markets, which focus on forecasting market conditions without directly considering the impact of subsequent decisions during training. Recently, learning models have evolved to incorporate decision outcomes during training, known as Decision Focused Learning (DFL) methodologies, which have the potential to increase market benefits. This paper introduces a DFL approach that integrates the decision-making process of BESSs when participating in reserve markets into the training of their predictive models. By expressing the optimisation problem as a primal–dual mapping using the Karush–Kuhn–Tucker (KKT) conditions, the proposed DFL method enables the regressor to learn from the BESS’s decisions, refining its predictions based on observed outcomes, improving decision accuracy and market performance. Results show that the proposed DFL approach outperforms traditional PTO methods, with up to a 9.5% increase in profits for a case study based on the Belgian secondary reserve market, highlighting its effectiveness in managing the complexities of dynamic market conditions.

Description

Bibliographic citation

Paredes, Á., Toubeau, J. F., Aguado, J. A., & Vallée, F. (2025). On the participation of energy storage systems in reserve markets using Decision Focused Learning. Sustainable Energy, Grids and Networks, 42, 101677. https://doi.org/10.1016/J.SEGAN.2025.101677

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional