Enhancing Neuronal Coupling Estimation by NIRS/EEG Integration.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Neuroimaging techniques have had a major impact on medical science, allowing advances in the research of many neurological diseases and improving their diagnosis. In this context, multimodal neuroimaging approaches, based on the neurovascular coupling phenomenon, exploit their individual strengths to provide complementary information on the neural activity of the brain cortex. This work proposes a novel method for combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to explore the functional activity of the brain processes related to low-level language processing of skilled and dyslexic seven-year-old readers. We have transformed EEG signals into image sequences considering the interaction between different frequency bands by means of cross-frequency coupling (CFC), and applied an activation mask sequence obtained from the local functional brain activity inferred from simultaneously recorded fNIRS signals. Thus, the resulting image sequences preserve spatial and temporal information of the communication and interaction between different neural processes and provide discriminative information that enables differentiation between controls and dyslexic subjects.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by